
Journal of Information Processing Vol.20 No.4 1–9 (Oct. 2012)

[DOI: 10.2197/ipsjjip.20.1]

Regular Paper

LiVo: Sing a Song with a Vowel Keyboard

Kazuhiko Yamamoto1,a) Takeo Igarashi1,b)

Received: July 1, 2011, Accepted: November 5, 2011

Abstract: We propose a novel user interface that enables control of a singing voice synthesizer at a live improvisa-
tional performance. The user first registers the lyrics of a song with the system before performance, and the system
builds a probabilistic model that models the possible jumps within the lyrics. During performance, the user simultane-
ously inputs the lyrics of a song with the left hand using a vowel keyboard and the melodies with the right hand using a
standard musical keyboard. Our system searches for a portion of the registered lyrics whose vowel sequence matches
the current user input using the probabilistic model, and sends the matched lyrics to the singing voice synthesizer. The
vowel input keys are mapped onto a standard musical keyboard, enabling experienced keyboard players to learn the
system from a standard musical score. We examine the feasibility of the system through a series of evaluations and
user studies.

Keywords: Live Performance, Singing Voice Synthesis, Human Computer Interface, Musical Instrument, Text Entry

1. Introduction
The use of a singing voice synthesizer such as VOCALOID

[9] has become popular especially in Japan. However, there is lit-
tle precedent of live improvisational performance using real-time
singing voice synthesis even though there is a huge demand for
it. This is mainly because it is difficult to input song lyrics at a
real-time rate; this is the problem we want to address in this paper.

A possible approach is to use automatic fitting of the predefined
original lyrics to the melody currently being played using melody
matching. However, this approach has two problems. First, play-
ers often modify the melody significantly including addition of
grace notes and change of order in a live improvisational perfor-
mance. Second, the same melodies often appear repeatedly in a
song with different lyrics, making it difficult to find the appropri-
ate lyrics from melody alone in improvisational performance.

Another possible approach is to use speech recognition to in-
put lyrics. This allows the user to improvise arbitrary lyrics dur-
ing performance, but also presents several problems. First, recent
popular speech recognition techniques are optimized for recog-
nizing continuous speech as a whole, rather than for recognizing
individual characters in a song separately for timed performance.
Second, latency is inevitable in speech recognition, but is not ac-
ceptable for real-time musical performance. Finally, it is difficult
for the player to listen to his or her own performance while vo-
calizing.

There are a few experimental systems that allow the user to
input arbitrary Japanese lyrics during live performance using a
combination of vowel and consonant keys [13][20]. However,
they require the user to press two keys simultaneously to input a
character, making it difficult to play fast songs.

1 The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
a) yamamoto-o@is.s.u-tokyo.ac.jp
b) takeo@acm.org.jp

…

Ko n Ni Ti Wa
a Ri Ga To u～♪
o Ha Yo u
Ni Ho n Go～♪

To u Kyo u
Yo Ro Si Ku～♪
Ta No Si i Yo～♪...

Before Performance Actual Performance

Register the lyrics

Analyze

Probabilistic Model

Lyrics

A Standard Musical Keyboard

Vowel Input Keys Melody Input Keys

a i u e o

n

Input Vowel Sequence: o-n-i-i-a...

Estimated lyrics:
Ko-n-Ni-Ti-Wa...

Melody
step 1 forward

skip 1 character

a mistake

step 1 forward

skip 1 character

a mistake

step 1 forward

skip 1 character

a mistake

Singing Voice Synthesizer

Fig. 1 An overview of the proposed system. Our system consists of two
steps, lyric registration step and actual performance step. At the
lyrics registration step, the user registers the lyrics of the songs, and
the system analyzes it. At the actual performance step, the user si-
multaneously inputs the vowel sequences and melodies using a mu-
sical keyboard, and the system estimates the plausible lyrics from
them and synthesizes singing voice sounds.

To address these problems, we propose to use a vowel keyboard
to input the lyrics during live improvisational performances (Fig-
ure 1: right). In our system, the user inputs the lyrics with one
hand using a vowel keyboard and the melodies with the other
hand using a musical keyboard simultaneously. Our system al-
lows the user to modify the melodies of a song freely and to
pick an arbitrary portion of predefined lyrics during a live per-
formance.

Our system is designed for Japanese lyrics. In Japanese, a char-
acter consists of a consonant and a vowel (Figure 2). Hence, mul-
tiple Japanese characters match a given vowel. However, we can
identify the most plausible character sequence in the predefined
lyrics by finding the corresponding vowel sequence using a prob-

c⃝ 2012 Information Processing Society of Japan 1

Journal of Information Processing Vol.20 No.4 1–9 (Oct. 2012)

5 + 1 Vowels

W R Y M H N T S K

a

i

u

e

o

n

Vowels

Consonants

Fig. 2 In Japanese, a character consists of a consonant and a vowel. For example, ”Ka” is the combina-
tion of ”K” and ”a”, ”Su” is the combination of ”S” and ”u”. There are 5 vowels and a special
vowel (n) in Japanese.

abilistic alignment technique (Figure 1). Specifically, our system
automatically finds a portion of the predefined lyrics whose vowel
sequence matches well with the vowel sequence being input by
the player. We use a Hidden Markov model for alignment.

There are only five vowels in Japanese, ”a”, ”i”, ”u”, ”e”, and
”o”. We also use a special character ”n”, hence we use six keys to
input lyrics. This makes it possible to input vowels rapidly with-
out moving the hand to other locations in contrast to other meth-
ods that use many keys to input lyrics. Additionally, by mapping
the vowel keyboard onto a traditional musical keyboard, one can
represent lyrics as a standard musical score (Figure 3), enabling
the user to practice the skills more easily.

One possible criticism is that one can use only the predefined
lyrics in our system. It is not possible to compose completely
novel lyrics during performance, However, in real improvisa-
tional performance, it is actually rare to see the singer composes
completely new lyrics during performance. They may improvise
novel melodies, but improvised lyrics are usually composed of
phrases already in the original lyrics, and this can be handled us-
ing our method.

The contributions of this paper are as follows.

(1) Our system allows the user to perform regular Japanese
songs at the original tempo, including high-speed songs.

(2) Our system enables the user to rearrange the pieces of pre-
defined lyrics in a live improvisational performance.

(3) We introduce the analogy of a musical score alignment tech-
nique to lyrics alignment.

(4) We examine the feasibility of the method with performance
evaluation and user studies.

2. Related Work
2.1 Live Performance using Singing Voice Synthesis

Yamamoto et al. [20] used a combination of a dedicated special
keyboard to input lyrics used by the left hand and a standard mu-
sical keyboard used by the right hand for improvisational perfor-
mance (Figure 4). The lyrics keyboard is designed for Japanese,
consisting of ten consonant keys and five vowel keys placed to fit
the left hand. The user inputs a character by pressing a combina-

Sa Ku Ra Sa Ku Ra Ya Yo i No So Ra Wa Mi Wa Ta Su Ka Gi Ri Ka Su Mi Ka

Melody

Melody

Vowels

Vowels

Si Mo Ka Ni o i Zo i Zu Ru i Za Ya i Za Ya Mi Ni Yu Ka n

Fig. 3 In our system, the lyrics can be represented as a standard musical
score as the left hand part, because vowel keys are mapped onto a
standard musical keyboard. (Song: SakuraSakura)

tion of a consonant key and a vowel key. However, it is difficult
for a typical player to press correct multiple keys simultaneously
during a live performance.

Formant Bros. [13] assigned lyrics input keys to a common
musical keyboard (Figure 5). A character can be input using the
triplet three-key combination of a pitch key, a consonant key, and
a vowel key. The benefit of this approach is that it enables de-
scription of lyrics and melodies as a standard musical score, mak-
ing the method easy to learn. However, the consecutive triplet
chord input is difficult even for professional pianists. Thus, the
approach remained at the level of playing slow nursery rhymes,
in contrast to regular songs played at a realistic speed (we assume
the range of tempo of regular songs is about 50∼200 BPM [beats
per minute]).

HANAUTAU [17] uses pitch detection from the user’s voice
inputted by microphone for melody and lyrics typed with both
hands using a common QWERTY keyboard. However, using a
QWERTY keyboard does not provide input at a speed sufficient
to play common music adequately.

A case has been made to use a Flick text input method [12]
for live performances using real-time singing voice synthesis to
input lyrics. Although the Flick text input method is a fast text en-
try method, it still can’t achieve sufficient input speed for singing
a song. Additionally, because it requires two-step control (push
and slide), it is difficult to adjust the timing to the music using
that method.

DiVA [2] uses CyberGlove and several sensors and measured
the hands gestures to control the lyrics. The gestures are trained
and trigger a neural network with a given gestural language that

c⃝ 2012 Information Processing Society of Japan 2

Journal of Information Processing Vol.20 No.4 1–9 (Oct. 2012)

Lyrics

Vowel Keys

Consonant Keys Melodies

Fig. 4 Yamamoto et al. [18] used the combination of a special lyrics key-
board and a piano keyboard.

Fig. 5 Formant Bros. [12] mapped the lyrics input keys onto a standard
musical keyboard.

associates one posture for each phoneme of English. [6] also
measures hands gestures to control both pitch and the phoneme
of singing voice synthesizer. However, the gestural control is dif-
ficult for fast songs.

Cantor Digitalis [3] has been used in several musical impro-
visations using singing voice synthesizer by multi-touch tablet.
Their alphabet control is limited in only a few vowels (formants)
and can’t output the most characters including consonants as a
language. Then, their system is inadequate for performing the
lyrics of common songs. We address this issue.

2.2 Text Entry
Text input predictions [4] [16] and query word suggestions [8]

[22] are not applicable to our target purpose, because they pose
two problems for our target. First, there is no way to input the
first character of the word the user wants to input at a real-time
rate. Second, there is no way to select a candidate in real-time.

Many studies have been conducted regarding word completion
[1] [19] from the user’s ambiguous input. The word comple-
tion methods modify or correct word input by the user including
mistypes to form a plausible word. However, these approaches
use lazy evaluation. Lazy evaluation estimates the correct word
retroactively after the user inputs several words. Thus, it can’t
be used for our target, which requires outputting the characters
individually.

2.3 Musical Score Alignment
Musical score alignment techniques estimate the current play-

ing position of given music (audio or MIDI stream) in a musical
score in a database, and use it for various applications such as
generating musical accompaniments [15], and displaying the mu-
sical score using auto scroll [7] [10].

Recent studies regarding musical score alignment are catego-
rized into two approaches. The first approach is to solve the prob-
lem by minimizing some metrics representing how two musical
signals differ at each time [21]. This approach is vulnerable to the

a i u e o n
a i u e o

n

Fig. 6 The vowel input keys are mapped onto a standard musical keyboard.
They can be covered by a hand.

uncertainty of the user’s performance including mistakes, tempo
change, or other musical expressions. The second approach is to
use probabilistic models [11] [14] [15]. This approach is advanta-
geous because it is robust against such uncertainties in the user’s
performance. We also use a probabilistic model, but for vowel
sequence not for melody.

3. User Interface
An overview of our system is shown in Figure 1. Our sys-

tem requires two steps. The first step is lyrics registration be-
fore performance. The second step is actual performance. At
the lyrics registration step, the user registers the intended lyrics
to be used. The user can register multiple lyrics at a time. At
the performance step, the user simultaneously inputs vowel se-
quences using a vowel keyboard and melodies using a musical
keyboard. The system estimates the plausible lyrics from the
vowel sequences and synthesizes singing voice sounds. Note that
the system does not use a melody sequence for estimation.

The vowel keys are assigned to a portion of a standard musi-
cal keyboard. In our prototype, each key mapping is set as ”a”
to C2, ”i” to D2, ”u” to E2, ”e” to F2, ”o” to G2, ”n” to E♭2,
to fit all the keys in a palm (Figure 6). This makes it possible to
represent a vowel sequence as a standard musical score, making
it easier for players to practice the performance. In addition, the
musical score for our system requires only monophonic phrases
of six vowel keys, which is much simpler than that of Formant
Bros. Actually, the musical score for our system is much easier
than popular piano scores such as J.S.Bach and Chopin.

Our system doesn’t require the user to input the vowel se-
quences strictly in the order of the original lyrics, because the
system estimates the probable lyrics using a probabilistic model.
This allows the user to jump to arbitrary positions in the lyrics
including backtracking. Additionally, our system allows the user
to make mistakes, freeing the player from paying excessive at-
tention to vowel input. When the user jumps the position of the
lyrics, the system would output a few wrong characters until fol-
lowing the user. However, these wrong characters at least have
correct vowels, which limits the level of discomfort.

The timing control is complicated because two keys must be
pressed in a coordinated way. Our current implementation is as
follows. If a pitch key has already been pressed, the system be-
gins a new voice when a new vowel key is pressed. However, if
no pitch key has been pressed, the system does not begin a new
voice, when a new vowel key is pressed. If a vowel key has al-
ready been pressed, the system begins a new voice, when a new
pitch key is pressed. If no vowel key is pressed, the system be-
gins a new voice with the last vowel input by the user, when the
user presses a new pitch key. We choose this asymmetric scheme
because pitch keys serve as the main control, with vowel keys

c⃝ 2012 Information Processing Society of Japan 3

Journal of Information Processing Vol.20 No.4 1–9 (Oct. 2012)

Text Area for typing Lyrics before performance

The Current Character to Perform

If user input the next vowel,
the system outputs these characters

The Currently Playing Segment

o o

tThe Currently Playing SegmenttThe Currently Playing Segmentte Currently Playing Segment

mformrfPPerfe mPP rforoeP rfor

N

Da I Hu Te Yo U

U Ta Go e Go u Se i (u a o e o u e i)

Fig. 7 The user interface view of the LiVo system on a web browser. The
user enters the lyrics in the top left text area before performance. The
characters displayed on the bottom left keyboard view represent the
predicted characters which would be sent to the singing voice syn-
thesizer next when the user would press the vowel key.

serving as a modifier. Note that previous systems [13] [20] be-
gin a voice only when 3 keys (vowel, consonant, and pitch) are
pressed together, creating difficulty in producing fast real-time
performance.

4. Technical Details of Lyric Alignment
This section explains how we estimate the position that the user

wants to perform in the lyrics from the vowel sequences input by
the user. In the registration step, the system analyzes the lyrics
entered by the user, and constructs a data structure to be used
in the performance. In the actual performance step, we estimate
the most probable lyrics using a Hidden Markov Model (HMM)
that encodes the behavior of the movements between consecu-
tive characters in the lyrics and jumps during performance. We
search the end point of the Viterbi path in this HMM using multi-
agent search to find the best matching lyrics for the given vowel
sequence. Note that the estimation solely depends on the vowel
input, and does not use melody information at all.

4.1 Lyric Registration Step before Performance
Figure 7 shows the user interface view of the system. The user

types the lyrics in the top-left text area and presses the ”convert”
button to finish. Here, our implementation allows only Hiragana
characters as input for simplicity, although Kanji character can be
supported. The text format for typing lyrics is shown in Figure 8.
The system requires the user to annotate rough structures of the
song (e.g., repeating, verse, chorus, or several phrases) manually
using line breaks. With more line breaks inserted, the system in-
terprets the point as a larger compartmental boundary. Note that
the system doesn’t distinguish the kind of a section the user de-
limited (e.g., it doesn’t care about whether a section is verse or
chorus), and the user can split the lyrics of the song into arbitrary
blocks.

After the user completes text entry, the system decomposes the
text into morphemes using morphological analysis, connecting
a morphme to the previous morpheme, if the morpheme con-
tains only one character (because we consider it to be unnat-
ural to voice a morpheme consisting of a single character in a
song). To be able to execute the morphological analysis, we first

1 : Amazing grace How sweet the sound

2 : That saved a wretch like me

3 :

4 : I once was lost, but now I am found

5 : Was blind, but now I see

6 :

7 :

8 : Was grace that taught my heart to fear

9 : And grace my fears relieved

10:

11: How precious did that grace appear

12: The hour I first believed

a line break

a line break (null line)

chorus 1

pre-chorus 2

chorus 2

１st

２nd

two line breaks

pre-chorus 1}

♪Amazing Grace (John Newton)

}

}

}

}

}

Fig. 8 The text format for registering lyrics before performance. It is re-
quired to annotate the rough structures of the song (e.g. verse, cho-
rus, a bunch of musical phrase etc...) by inserting line breaks. We use
English here for explanation. The real system only takes Japanese al-
phabets as input.

machine-translate the Hiragana characters the user inputted to the
text including Kanji characters. If the morphological analysis in-
cludes errors, the user can fix them manually. Additionally, if
a divided character string contains repeating characters such as
(”Yu” - ”Ra” - ”Yu” - ”Ra”), the system saves only one instance
of the repeat (”Yu” - ”Ra”) with the number of repeats (in this
case, two). We define each delimited character sequence after
these operations as a ”segment”. Each segment becomes the leaf
node of the lyrics tree as described in the next paragraph.

Commonly, a song has the hierarchical structure that consists
of musical phrases [18]. We construct a hierarchical tree structure
(called lyrics tree) of the segments using the user’s annotations
(Figure 9). The lyrics tree is constructed by dividing the array of
segments recursively from a large structure to a small structure
according to the annotations (the smallest structure is a segment).
The lyrics tree is used for determining the probabilities of each
movement in the lyrics as described in the next subsection.

4.2 The User’s Behavior Model for Lyric Movements
We model how the user moves from one character to another

character in the lyrics during a performance as an Ergodic Hidden
Markov Model (HMM) (Figure 10). In our HMM, an unobserved
state corresponds to a position in the lyrics and a transition be-
tween unobserved states corresponds to a movement in the lyrics.
Each transition generates a specific observable symbol determin-
istically, which is a vowel of a character. For example, if we have
a pre-registered lyrics ”Ko-n-Ni-Ti-Wa (segment 1), a-Ri-Ga-To-
u (segment 2)”, the HMM produces an observable symbol ”o”
when moving to a state ”Ko” or ”To”.

Each state transition probability of our HMM (probability of
a movement in the lyrics) is computed according to the kind of
movement. For example, moving to the next character is more
likely than a jump to a distant location, moving within a segment
is more likely than a jump to the different segment, and a jump to
the head of a sentence is more likely than a jump to the middle

c⃝ 2012 Information Processing Society of Japan 4

Journal of Information Processing Vol.20 No.4 1–9 (Oct. 2012)

...

Zo u No Ta Ma Go Wa O i Si i Zo u Mu Sya Mu Sya Ta Be Ru To O i Si i Zo u

Zo u No Ta Ma Go Wa O i Si i Zo u Mu Sya Mu Sya Ta Be Ru To O i Si i Zo u

Zo u No Ta Ma Go W O i Si i Zo u Mu Sya Mu Sya Ta Be Ru To O i Si i Zo u

Zo u No Ta Ma Go Wa O i Si i Zo u Mu Sya (2 repeated) Ta Be Ru To O i Si i Zo uSegments

The 0-level nodes

The 4-level nodes

The 5-level nodes

Verse 1 Verse 2 Chorus 1

The 1st song The 2nd song

The root

...

The 1-level nodes

The 2-level nodes

The 3-level nodes

...

Fig. 9 The hierarchical tree structure of the lyrics segments. The system constructs this structure ac-
cording to the annotations of the user. The number at the top right of each segment denotes its
hierarchical level. The black lines denote the edges. The red, blue and green arrows denote possi-
ble movements by the user in this tree.

Fig. 10 We model the user’s movement between two characters in the lyrics
during performance as Hidden Markov Model (HMM). A position
in the pre-registered lyrics becomes a state.

of a sentence. In a similar way, we determined the likelihoods
of all kinds of the movement by a heuristic manner. The system
first enumerates all the possible movements from the current state
and sorts them by the likelihood by the kind of movement. For
example, in the above example, if you are at ”n”, possible des-
tinations are ”Ni” (next character), ”Ti” (skip a character), ”n”
(stay at same character), ”Ko” (previous character), ”a” (jump to
the head of the next segment) in the order of likelihood. Next,
we define a monotonically decreasing linear function (it fills the
condition

∫ ∞
0 f (x)dx = 1) (Figure 11). We split the area sur-

rounded with this function and (x >= 0, y >= 0 in Figure 11)
evenly along the x-axis, and assign the positions in the sorted list

Assigned State 1

Assigned State 2

Assigned State 3

Fig. 11 Each state transition probability of HMM is determined manually
by the authors. we prepare a monotonic decreasing distribution
function, and assign the divided area to them according to the like-
lihood of kinds of movement.

to each split area to be correspond the movement to the position
that has higher likelihood to larger area. Finally, the system uses
each assigned area (colored area in Figure 11) as the transition
probability to move to the position.

The likelihood of a movement is computed by traversing the
lyrics tree. An example is shown in Figure 9. When the current
state is one of the character at a leaf node, it can move to the next
character within the same leaf node, or move up to parent nodes
and then come down to some other leaf node like red, blue and
green arrows in Figure 9. Each step movement in the tree is as-
sociated with a certain cost (e.g. moving to a next character has
lower cost than moving to a higher level), and the system accumu-
lates these costs during the traversal. In particular, we multiplied
a certain weight (0.0 < w < 1.0) according to the traversed num-
ber of the tree edges necessary to move to the next position along
the tree. We used 0.8 as this weight in our experiment.

4.3 Estimation of the Performed Position in Lyrics during
Performance

The most likely position the user wants to perform in the lyrics
can be computed as the end point of the Viterbi path that gives the
highest accumulated state transition probability (minimum cost)
among all the possible paths in the HMM. The Viterbi path is also

c⃝ 2012 Information Processing Society of Japan 5

Journal of Information Processing Vol.20 No.4 1–9 (Oct. 2012)

PC

Fig. 12 The system setup.

required to output a vowel sequence that matches with the user
inputs. We search this path using a multi-agent search algorithm
[5].

The multi-agent search uses multiple interacting intelligent
agents for finding the minimum cost path. Each agent is asso-
ciated with a state in the HMM (a position in the lyrics), and
moves to the next state according to the HMM (color circles in
Figure 10). Since multiple destination states exist for a state,
the system generates multiple copies of an agent and associates
a copy with each destination state. However, if the movement
is an impossible one, the system discards the copy. Each agent
is scored by the accumulation of the state transition probabilities
between the respective pairs of HMM states passed. For exam-
ple, the score of the agent 1 in Figure 10 is determined by using
π1

0 × τ12 × τ23 × τ35 × τ56 where π1
0 denotes the initial probability

of state and τi j denotes the state transition probability from state
i to state j. If the score of an agent becomes less than a threshold,
the system destroys the agent. Note that we used 0.01 for this
threshold in our experiment. Basically, Lower threshold is better
although lower threshold increases the computational cost. When
the number of the agents decrease, the system seeds new agents
to randomly selected positions and each agent restarts. Addition-
ally, if multiple agents are reached at the same position in the
lyrics, the system retains only the agent with the highest score.
This procedure corresponds to the pruning process in dynamic
programming. Finally, we obtain the optimum position by select-
ing an agent has the maximum score at the current time. In our
experiment, we used 512 agents. Here, we set the initial proba-
bilities of all the states as 1.0. When the system starts, the initial
state is randomly selected, or the user selects manually on the
right pane of the UI view (Figure 7).

5. Evaluation
5.1 Implementation

Figure 12 shows the system setup for LiVo. The software for
the system is written in Javascript, runs on web browser. We
used YAMAHA NSX1-board for a singing voice synthesizer. The
MIDI keyboard and the singing voice synthesizer are connected
to the computer by USB, and the web browser communicates with
them by Web MIDI API.

The correct rate (%)

The ratio of
the containing error[%]

SenbonSakura

World is Mine

Melt

HatsyneMiku
no Syoushitsu

100

90

80

70

60

50

40

30

20

10

Fig. 13 The robustness against mistakes during performance. The horizon-
tal axis: The ratio[%] of numbers of the inserted error vowels to
the total numbers of characters in the song. The vertical axis: The
correct rate [0,100] . Higher value represents higher accuracy.

We measured the computation time from receiving a NOTE
ON message from MIDI keyboard to sending a NOTE ON mes-
sages to the synthesizer via MIDI OUT. Our equipments are
CPU:2.6 GHz Intel Core i7, RAM:16GB, Web Browser:Google
Chrome. This latency was less than 1[ms]. Thus, it is negligible
for human perception. In our implementation, total memory re-
quirement for the system was about 44[MB] with 1000 characters
lyric.

5.2 Accuracy of the Alignment Algorithm
First, we examined robustness against mistakes. Table 1 shows

the song list used for our experiments. The original vowel se-
quences are defined as the vowel sequences extracted from the
lyrics of the original songs. We generated random error vow-
els by the uniform sampling from six vowels (”a”, ”i”, ”u”, ”e”,
”o”, and ”n”), and inserted them into random positions between
the two vowels of the original vowel sequences. The inserted
positions are selected randomly according to an uniform distri-
bution ranging between one and the total number of characters
in the song minus one. Note that we prohibited inserting more
than three error vowels sequentially. We inputted this vowel se-
quences containing error vowels into our system as a source and
examined the error rate of the output characters compared to the
original lyrics.

The relationships between the numbers of inserted errors and
the output error rate are shown in Figure 13. Although over 30%
errors cause a fatal decrease in accuracy, the system maintains
more than 85% accuracy for 10∼20% errors. These results show
that the system is reasonably robust against errors in vowel input.

In a second experiment, we examined robustness against jumps
to irregular destinations in the lyrics. The songs used for this ex-
periment are the same as those used for the previous experiment.
We randomly rearranged the lines in the registered lyrics (this
lines correspond to the rows in Figure 8), and used their vowel
sequences as input. When the input vowel sequence moves to

c⃝ 2012 Information Processing Society of Japan 6

Journal of Information Processing Vol.20 No.4 1–9 (Oct. 2012)

Fig. 14 The performance scene by a professional pianist.

Title Author Characters Following
1. Senbon Sakura KurousaP 616 3
2. World is Mine supercell 628 2
3. Melt supercell 432 2
4. HatsuneMiku no Shoushitsu BousouP 1373 4

Table 1 The song list used for experiments. The ”following” column rep-
resents the numbers of output wrong characters after jumping the
positions in the second experiment in §5.2. These numbers repre-
sent higher abilities as lower number.

the next randomly rearranged line, the system first makes sev-
eral errors because it expects the next line in the original lyrics.
However, the system eventually identifies the correct line after
observing several incoming vowel keys. We counted the max-
imum number of incorrect output characters before identifying
the correct line.

The result of this experiment is shown in Table 1 as ”follow-
ing” column. The result shows that robustness against jumps to
irregular destinations is strongly affected by the total number of
characters in the lyrics. However, even for ”HatsuneMiku no
Shoushitsu”, which has the most characters in our experiments,
our system successfully finds the correct segments within a few
characters, which is mostly shorter than a single morpheme in
Japanese. This result shows that the system is reasonably robust
against improvisational jumps during performance.

5.3 Playability
We examined the playability of our system by a professional

pianist. We selected a famous Japanese song ”SenbonSakura”
(Author: KurousaP) for performance. This song is one of the
Japanese songs with the fastest tempo (BPM: 152), and contains
fast movements (including a lot of sequential 16 parts of note
phrase) between the characters in the lyrics. We picked this song
as a stress test for the system. The time for practice was one week,
one hour per day.

As the result, this song can be performed at the original tempo
at the performance. The total length of the performance was four
minutes, five seconds. The pianist adds several musical expres-
sions including ad-lib modification of the melody. These expres-
sions can’t be performed using any existing methods. Addition-
ally, the system outputted plausible lyrics, even though the pianist
often made mistakes and improvisational changes.

In addition, we recruited five participants and played the
recorded sound of this performance for them. We asked them
to report the number of times they felt an unnatural singing voice
sound. No one reported this more than three times.

Fig. 15 Two scenes at the workshop.

Furthermore, some users including the pianist of this ex-
periment and authors (7 participants) have tried to play For-
mant.Bros’ system [13] and Yamamoto et al.’s system [20] for
the comparisons of the playability. However, no one was able to
play the song used in our experiment with their systems at the
same tempo. This shows that it is almost impossible to play such
a fast song with existing systems.

5.4 Workshop
We held a workshop with ten amateur pianists, all of whom

have played with piano or other musical keyboards for more
than five years. We gave the players a musical score for our
system and asked them to practice. We selected a standard
jazz song ”Autumn Leaves” (Music:Joseph Kosma, Lyrics:Junko
Akiyama) with the tempo 120[BPM] for practice. All participants
had already known this song before the workshop. We printed the
score at this study. The user checked the vocal singing sound only
by hearing. The time to practice was three days, 30 minutes per
day for all participants (Figure 15).

We monitored the ratio of the number of vowel input mistakes
to the total number of characters of the song in the case of play-
ing the musical scores strictly by repeating practices. The result is
shown as Figure 16. This figure shows the relationships between
the ratio of the different played notes to the original and prac-
tice times of each participant. We found that the ratio decreases
rapidly with repeating practice. Then, we verified that our system
doesn’t require any further skills for common pianists.

After the practice, we requested the participants to play the
song to an accompaniment for more than six choruses repeat-
edly, while modifying the melodies and jumping freely ad-lib.
As described in §Introduction, most existing approaches, such as
melody fitting, can’t be used for this scenario. We included this
actual scene in the supplemental video. The video shows each pi-
anist playing the song while modifying the melody significantly
ad-lib. The participants re-mixed the pieces of the predefined
lyrics flexibly. This new type of musical expression is enabled
by our system. Note that all participants we employed already
had a skill for improvising music by piano before the experiment.
So, special trainings for improvisation were not required, even
including the control of lyrics.

After the workshop, We conducted individual interviews. At
the interviews, we asked three questions. First, about the diffi-
culty of the system: easy, neutral, difficult, impossible. If difficult
or impossible, we were going to ask the reason. But, all partici-
pants answered it’s easy. Second, about the playability. We asked

c⃝ 2012 Information Processing Society of Japan 7

Journal of Information Processing Vol.20 No.4 1–9 (Oct. 2012)

The practicing times of each participant

T
h

e
 r

a
te

 o
f

th
e

 e
rr

o
rs

[%
] 45

30

15

60

0

1 5 10 15 20

Fig. 16 The amount of vowel input mistakes made by test participants plot-
ted against the number of practices. The vertical axis shows the
ratio of the errors to the total numbers of characters in the song and
the horizontal axis shows the number of practice.

whether the user has any dissatisfactions for expressing the musi-
cal phrases they want. Finally, we requested free comments.

One participant mentioned that our system outputs the correct
vowel component even if the system outputs wrong lyrics after
a jump. She said this property is advantageous because it can
minimize the sense of discomfort in the hearer.

Some participants (6/10) mentioned that they feel discomfort at
first because they already have substantial experience playing pi-
ano and can read musical scores, but the vowel keys we assigned
on the musical keyboard don’t correspond to the heard pitches
of the synthesized sound. However, they also mentioned that the
sense of discomfort decreased gradually as they adjusted to our
system.

Nearly all participants (8/10) said that the system allow input
mistakes to some extent and it was a nice feature. They added
that practice for our system was substantially easier than they ex-
pected, because the lyrics are represented as a standard musical
score. We consider these to be significant merits of our system.

Others (3/10) said that they often worried about the latency of
the ”S” consonant when voicing. The characters that have the ”S”
consonant are sibilant. Sibilant characters are voiced after a com-
paratively long breath sound, and the timing of voicing the vowel
is perceived as the rhythmic timing. Then, if the user presses
a key to start a voicing sibilant on the exactly the timing in the
rhythm, the sound will be perceived late. In the case of voicing
by mouth, we usually overcome this problem through practice,
intentionally beginning to voice a character with the ”S” conso-
nant slightly earlier. However, the participants had not mastered
it for our system in our limited study. We think that this requires
substantially more training.

6. Conclusion and Future Work
In this paper, we proposed a practical user interface that en-

ables the use of real-time singing voice synthesizer at an impro-
visational live performance by inputting the lyrics and melodies
of songs simultaneously using a standard musical keyboard. The
proposed system allows arbitrary movements within the lyrics in-
cluding jumping, backtracking, and mistakes by estimating plau-
sible lyrics from vowel sequences using a probabilistic model.
Additionally, the lyrics for our system can be described using a
standard musical score making it easier to learn. As a result, we

achieved flexible control of lyrics and melody using our system
at real-time rate that enabled live improvisational performance of
distinctive musical expressions.

However, our study leaves several problems to be addressed
in the future. First, our approach is dependent on the specific
properties of the Japanese language, which is a mora language
with only five vowels. Consequently, it is difficult to apply to
other languages such as English. Second, in our system the in-
terpretation of the structure of a song depends on manual annota-
tions by the user. We expect that it will be convenient to have the
system automatically extract this structure by using natural lan-
guage processing techniques. In addition, our method has many
parameters, such as the state transition probabilities in the HMM,
determined empirically by the authors. Automatic learning and
adjustment of these parameters is an important task left for future
work.

References
[1] Buschek, D., Schoenleben, O., Oulasvirta, A. Improving Accuracy in

Back-of-Device Multitouch Typing: A Clustering-based Approach to
Keyboard Updating, IUI’14, ACM Press, p.57-66, 2014.

[2] d’Alessandro, Nicolas, Wang, J., Pritchard,R., Fels, S. Bringing Bio-
Mechanical Modelling of the OPAL Complex as a Mapping Layer for
Performative Voice Synthesis, 9th International Seminar on Speech
Production (ISSP), p.111-118, 2011.

[3] Feugere, L., d’Alessandro, C., Doval, B. Performative voice synthesis
for edutainment in acoustic phonetics and singing: a case study using
the Cantor Digitalis, 5th International ICST Conference, p.169-178,
2013.

[4] Gargi, U., Gossweiler, R. QuickSuggest: Character Prediction for Im-
proved Text Entry on Web Appliances, International Conference on
the World Wide Web, p.1249-1252, 2010.

[5] Goto, M., Muraoka, Y. Beat Tracking based on Multiple-agent Archi-
tecture - A Real-time Beat Tracking System for Audio Signals, The
Second International Conference on Multiagent Systems, p.103-110,
1996.

[6] Ito, M., A singing voice synthesizer controlled by arm motions using
compressed phoneme determination algorithm, Proc. Proc. IIH-MSP,
2014.

[7] Joder, C., Essid, S., Richard, G. A Conditional Random Field Frame-
work for Robust and Scalable Audio-to-Score Matching, IEEE TASLP,
Vol.19, No.8, p.2385-2397, 2011.

[8] Kamvar, M., Baluja, S. Query Suggestions for Mobile Search: Under-
standing Usage Patterns, ACM Computer Human Interaction (CHI),
p.1013-1016. 2008.

[9] Kenmochi, H., Ohshita, H. YAMAHA Corporation. VOCALOID -
Commercial Singing Synthesizer Based on Sample Concatenation, IN-
TERSPEECH, p.4009-4010, 2007.

[10] Lemouton, S., Schwarz, D. Score Following: State of the Art and New
Developments, New Interfaces for Musical Expression (NIME), p.36-
41, 2003.

[11] Maezawa, A., Okuno, H. G., Ogata, T., Goto, M. Polyphonic Audio-
to-Score Alignment based on Bayesian Latent Harmonic Alloca-
tion Hidden Markov Model, International Conference on Acoustics,
Speech and Signal Processing(ICASSP), p.185-188, 2011.

[12] Mikumin P. Flick input for realtime singing synthesizer,
http://www.nicovideo.jp/watch/sm17357529, 2013.

[13] Miwa, M., Sakonda, N. BROTHERS’ Button to Phoneme Transfer
Standard for International Language, Departmental Bulletin Paper for
Nagoya University of Arts and Science, Vol.6, p.21-33, 2013.

[14] Nakamura, E., Nakamura, T., Saito, Y., Ono, N., Sagayama, S. Outer-
Product Hidden Markov Model and Polyphonic MIDI Score Follow-
ing, Journal of New Music Research, 43(2), p.183-201, 2014.

[15] Nakamura, T., Nakamura, E., Sagayama, S. Acoustic Score Following
to Musical Performance with Errors and Arbitrary Repeats and Skips
for Automatic Accompaniment, Sound and Music Computing Confer-
ence (SMC), p.200-304, 2013.

[16] Silfverberg, M., MacKenzie, S. Korhonen, P. Predicting Text Entry
Speed on Mobile Phones, The ACM Conference on Human Factors in
Computing Systems (CHI), p. 9-16, 2000.

[17] Takemoto, T., Baba, T., Katayori, H. A Real-Time Singing Generator
Using Typing and Humming ”Hanautau” Based on an Agile Software
Development, Interaction, Information Processing Society of Japan,

c⃝ 2012 Information Processing Society of Japan 8

Journal of Information Processing Vol.20 No.4 1–9 (Oct. 2012)

2014.
[18] Watanabe, K.,Matsubayashi, Y., Inui, K., Goto, M. Automatic

Japanese Lyric Generation Based on The Hierarchical sSructure of
The Song, The Association for Natural Language Processing, p.694-
697, 2014.

[19] Wobbrock, L., Wigdor, J.O. Typing on Flat Glass: Examining Ten-
Finger Expert Typing Patterns on Touch Surfaces, ACM Computer
Human Interaction (CHI), p2453-2462, 2011.

[20] Yamamoto, K., Kagami, S., Hamano, K., Kashiwase, K. The Develop-
ment of a Text Input Interface for Realtime Japanese Vocal Keyboard,
Journal of Information Processing, Vol.21, No.2, p.274-282, 2013.

[21] Yamamoto, R., Sako, S., Kitamura, T. Robust on-line Algorithm for
Realtime Audio-to-Score Alignment Based on a Delayed Decision
and Anticipation Framework, International Conference on Acoustics,
Speech and Signal Processing (ICASSP), p.191-195, 2013.

[22] Zhang, X., Zilles, S., Holte, R.C. Improved Query Suggestion by
Query Search, The 35th German Conference on Artificial Intelligence,
Lecture Notes in Artificial Intelligence 7526, p.205-216, 2012.

Kazuhiko Yamamoto was born in 1985.
He recieved his Master of Design degree
from Kyushu Univeresity in 2010, and
has been engaged in YAMAHA corpo-
ration since 2010. He also joined the
University of Tokyo as a Ph.D student in
2013. His research interests include com-
puter graphics, numerical simulation, hu-

man computer interface, and audio/image signal processing.

Takeo Igarashi He received a Ph.D from
the Department of Information Engineer-
ing at The University of Tokyo in 2000.
He joined the University of Tokyo as an
Assistant Professor in 2002, and became a
Professor in 2011. He also served as a di-
rector for JST ERATO (2007 - 2013). His
research interest is in user interfaces and

interactive computer graphics.

c⃝ 2012 Information Processing Society of Japan 9

