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ABSTRACT

Capturing and generating a wide variety of musical expres-
sion is important in music performance rendering, but cur-
rent methods fail to model such a variation. This paper
presents a music performance rendering method that ex-
plicitly models the variability in interpretations for a given
piece of music. Conditional variational recurrent neural
network is used to jointly train, conditioned on the music
score, an encoder from a music performance to a latent rep-
resentation of interpretation and a decoder from the latent
interpretation back to the music performance. Evaluation
demonstrates the method is capable of predicting and gen-
erating an expressive performance, and that the decoder
learns a latent space of musical interpretation that is con-
sistent with human perception of interpretation.

1. INTRODUCTION

Music performance rendering is the task of generating a
human-like performance data from a piano music score.
That is, for each note in a given music score, it generates
a set of expressive performance parameters such as the on-
set timing, the duration and the velocity. It is an important
task in music production, allowing a composer to gener-
ate human-like piano part of a new composition, or a mu-
sician to listen to a convincing preview of a digital sheet
music. It is not only important to generate a convincing
performance, but also to allow humans to interact in the
generation. For example, it is useful to be able to adjust
expressive parameters, or, like how a musician might ask
to another musician, feed a reference performance snippet,
in expression of which the system should perform.

Capturing and generating a wide variety of musical ex-
pression are important in music performance rendering,
but current methods are limited in such capabilities. For
example, most methods permit control over concrete mu-
sical concepts like the average tempo and the average ve-
locity [2], but cannot manipulate abstract musical concepts
that cannot be labeled, such as liveliness within a perfor-
mance. It is also not possible to feed a short reference per-
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Figure 1. The overview of our method.

formance snippet and ask the system to play with that par-
ticular musical musical interpretation.

These limitations are rooted in the attempt to directly
map between the music score and expressive performance
[4]. Such a model entwines musical interpretation and its
execution, but a human performer presumably decouples
musical intent and its execution given the score. For ex-
ample, when playing a piece multiple times, a musician
might play lively the first time but calmly on the second.
Given the intent, however, its execution is consistent based
on musical contexts, such as whether a note is a melody or
if a particular measure is a beginning of a new phrase. For
example, a lively playing might be executed, almost sec-
ond nature, as shorter chords and louder melody, or calm
playing as softer and more broken chords.

To address this problem, we present a music perfor-
mance rendering method that explicitly decouples intent
and its execution based on a music score. We achieve this
by jointly training a performance decoder (performance
renderer) and a performance encoder (performance ana-
lyzer) that are conditioned on (1) a music score, and (2)
an interpretation sequence, a latent low-dimensional se-
quence representation that expresses the underlying musi-
cal intent. It may be either generated automatically or ma-
nipulated coherently. Thus, it is possible to generate differ-
ent interpretations to a score by either modifying the inter-
pretation sequence or encoding a performance snippet as
an initial value for generating the interpretation sequence.

The conceptual overview is shown in Figure 1. Our
method, given a music score and an interpretation se-
quence, generates an expressive performance for the given
music (denoted (1)). Conversely, it can encode an expres-
sive performance into the interpretation sequence (denoted
(2)). To achieve such a capability, the encoder and the de-
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coder are jointly trained by encoding a human performance
and trying to recover it with the decoder (denoted by path
(3)).

Our contributions are as follows: (1) we propose a new
machine learning model, CVRNN, which extends vari-
ational recurrent neural network (VRNN [6]) to accept
position-dependent conditional inputs; (2) we apply con-
volutional recurrent network (CRNN) to extract features
from the music score; (3) we apply these two models and
present a first deep generative model that is simultaneously
capable of analyzing and generating an expressive music
performance for a given music score with adjustable musi-
cal interpretation.

We invite the readers to check out audio demon-
strations at https://sites.google.com/view/
cvrnn-performance-render .

2. RELATED WORK

Music performance rendering is the task of generating an
expressive performance from a music score [4]. The re-
search focuses mostly on generating a sequence of expres-
sive onset timings, durations and velocities for a piano
piece. Unlike the generation of improvisation [20], perfor-
mance rendering needs to understand the musical contexts
of the given music score, and generate a natural perfor-
mance constrained by the score.

Previous studies formulate performance rendering as
a prediction task of expressive parameters based on fea-
tures extracted from the music score, such as melodic fea-
tures [22], perceptual features [3], or neighboring con-
texts [9,18]. Then, expressive performance to a new music
score can be predicted using methods like a hidden Markov
model [12], a decision tree [18], or a dynamic Bayesian
network [8]. More recently, deep learning has been in-
corporated to better extract the features or predict the per-
formance. For example, deep neural networks have been
shown to be effective for dynamics prediction [21], tempo
prediction [15], and piano performance generation [11,17].

The capability to adjust the generated performance is
important, but current methods cannot capture the abstract
variations in playing. For example, the tempo or dynam-
ics [1, 7] can be adjusted, but controlling a more abstract
musical idea remains difficult. It is possible to manipulate
the performance by mixing the parameters of performance
renderers trained on multiple corpora [2], but it fundamen-
tally cannot identify commonalities and differences among
a set of corpora.

3. METHOD

Our method generates an expressive piano performance
data to a given piano music score, and an interpretation se-
quence that is either automatically generated, manually ad-
justed, or initialized by a performance snippet. The score
contains a sequence of notes (pitch, position and duration),
the average tempo, the time signatures, and the key signa-
tures. The interpretation sequence is a sequence of low-
dimensional vectors, each element of which is associated

with each note in the score. It is an abstract representation
of playing style, each vector of which is called the inter-
pretation vector. For each note, based on the interpre-
tation vector and musical context inferred from the music
score, our method estimates (1) the fine note onset timing,
(2) the duration, (3) the note-on velocity, and (4) the tempo
fluctuation of human performance.

To generate the performance, we use a deep generative
model that has been trained to generate an expressive per-
formance data, conditioned on the music score and the in-
terpretation sequence. To acquire a temporally coherent
manifold over the space of interpretation vector, we pro-
pose CVRNN, an extension of VRNN that accepts the mu-
sic score as a conditioning input. Essentially, we jointly
train three models: (1) a music score feature extractor that
extracts, for each note, relevant features (music score fea-
ture) from the music score, (2) an encoder that maps a
human performance to an interpretation sequence, and (3)
a decoder that maps an interpretation sequence to an ex-
pressive performance.

Hereon, n indicates the index of a note encountered in
the music score, lexicographically sorted by the onset beat
position and the pitch. xn indicates the expressive perfor-
mance data, cn indicates the music score feature that has
been extracted from the nth note on the score, and zn indi-
cates the interpretation vector associated with xn.

3.1 Representation of expressive performance

The generated expressive performance xn comprises of the
note velocity, the note duration, the micro-onset timing de-
viation and the tempo.

The note velocity is an integer between 1 and 127
indicating the MIDI velocity value, encoded as a 128-
dimensional one-hot vector.

The note duration is an integer between 1 and 800, in-
dicating the duration as 1/100ths of a beat relative to the
current tempo (e.g. duration of “42” means 0.42 beats). It
is encoded as an 800-dimensional one-hot vector.

The micro-onset timing is an integer between -50 and
49, indicating the number of 1/100ths of a beat elapsed
after an ideal onset time. The ideal onset time is computed
based on the generated tempo curve up to the current point
in the score. It is represented as a 100-dimensional one-hot
vector, ith element of which means that the onset is lagging
by (i− 50)/100 beats.

The tempo is an integer indicating the the difference be-
tween the current tempo and the tempo written in the mu-
sic score, in bpm. It is represented as a 100-dimensional
one-hot vector, ith element of which means that the out-
put should be faster than the written tempo by i− 50 bpm.
It is computed by interpolating the music score position
and the playback position of the performance using Gaus-
sian regression with a squared exponential kernel with a
FWHM of 2 beats.

3.2 Extraction of the music score feature

The music score contains a sequence of notes, average dy-
namics, average tempi, meters, and key signatures. From
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Music score information for the nth note in the score
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Notated duration
IOI from the previous note
Phase inside the measure
Quantized velocity in the score
Quantized tempo in the score
Meter (denominator / numerator)
Key signature (no. sharps)

One-hot representation

Figure 2. Overview of music score feature extractor for
extracting the music score feature.

the music score, we extract the music score feature cn,
which represents the nth note and its surrounding context.

To extract the feature, we use the following information:
the key signature as a 12 dimensional one-hot vector that
indicates the number of accidentals; the time signature as
a tuple of 12 dimensional one-hot vector, indicating the
numerator and the denominator; the pitch as a 128 dimen-
sional one-hot vector indicating the MIDI note number;
the inter-onset interval from the previous note as a multi-
ple of 96th note, represented as a 512 dimensional one-hot
vector; the duration of the note as a multiple of 96th note,
represented as a 192 dimensional one-hot vector; the writ-
ten tempo quantized to a multiple of 30 bpm, represented
as a 9 dimensional one-hot vector (30-300 bpm); the writ-
ten velocity quantized to a multiple of 10, represented as
a 12 dimensional one-hot vector; the piano-roll centered
about the current position in the score, spanning a radius
of 7 beats at a 32nd note resolution (224x128 dimension).
The velocity and the tempo are quantized at a low reso-
lution because different music notation software map the
dynamics and tempo markings to similar velocity and bpm
values, but the exact mapping differ.

Based on these inputs, we extract the feature using a
CRNN as shown in Figure 2. First, the piano-roll passes
through a CNN. It is comprised of four layers, whose ker-
nel sizes are all (4 × 4), and channel sizes from the lower
to the higher layers are [20, 40, 60, 80]. Each layer is fol-
lowed by max-pooling with a kernel size of (2× 1), batch
normalization and leaky ReLU nonlinearity. The output
the CNN is concatenated with the remaining one-hot vec-
tors mentioned above. Then, the concatenated vector is
passed through a multi-layer perceptron (MLP) with 1024
hidden units and leaky ReLU nonlinearity at the hidden
layer. The MLP output passes through a tanh nonlinearity.

Second, the output of the perceptron is embedded to 64
dimensions using a linear layer. The embedded vector is
then passed to a RNN consisting of 3 stacks of gated re-
current units (GRU) [5] with 64 neurons each.

Finally, the outputs of the MLP and the GRU stack are
concatenated to create the music score feature cn.

Position in the score

Pitch

(gru.a) (gru.b)

(cnn.a) (cnn.b)

Figure 3. Activation of the most active compo-
nents of GRU and CNN activations (dark=negative, yel-
low=positive).

Figure 4. Some feature maps learned from the CNN, over-
layed with the piano-roll (blue=negative, red=positive).

3.2.1 Analysis of the music score feature extractor

Here we illustrate some musically relevant concepts that
are acquired by the music score feature extractor. We have
trained our model using the same dataset used in Section 4,
and extracted the music score feature from measures 5–6
of Chopin’s Nocturne Op. 9-2 and extracted the GRU and
the CNN activations. Some of the highest GRU and CNN
activations are shown in Figure 3, showing, for each note,
the value of the corresponding activation in different color,
positioned at the beat position and the pitch written on the
score, a la piano-roll. We can see that the GRU acquires
concepts like the number of notes stacked below the cur-
rent point in the score (“gru.a”) or top notes (“gru.b”). The
CNN extracts longer contextual information such as the
melody (“cnn.a”), and the bottom notes (“cnn.b”). Nei-
ther the GRU nor the CNN becomes dead: the standard
deviation of the activation of the CNN and the GRU are
comparable (about 0.5 to 1.0), where about 90 GRU ac-
tivations have standard deviation of above 0.1, and about
150 for the CNN.

To analyze how these concepts are acquired, we show
in Figure 4 the feature maps of the final layers of the CNN,
overlayed to the piano-roll. The tendency of the map sug-
gests that the CNN expresses concepts like the register
(Fig. 4a), rising arpeggio (b), top and bottom melodic con-
tour (c), or melodic contour (d).

3.3 CVRNN for joint encoding and decoding of the
interpretation sequence

We assume that an expressive performance depends on
both (1) the musical context, expressed through the mu-
sic score feature, and (2) a corresponding sequence of low-
dimensional music interpretation vectors zn, dimension of
which is set to 5. It is necessary for zn to learn (1) a man-
ifold that zn resides in, that explains interpretation rea-
sonably well, and (2) a model of temporal evolution of
zn, so that the generated performance is temporally coher-
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Figure 5. Dependency of the CVRNN model. Solid ar-
rows indicate conditional dependence of the generative
process, and dotted arrows indicate conditional depen-
dence of the approximate posterior distribution.

ent. We achieve (1) by decoupling the music score and the
generative model of zn, such that zn learns a repertoire-
independent low-dimensional representation of variability
of playing. We achieve (2) by basing the temporal evolu-
tion of zn on the state of a RNN hn.

To meet these requirements, we model the generation
process with a CVRNN. There are three key components
in a CVRNN, as shown in the dependency diagram in Fig-
ure 5: (1) generation of the interpretation sequence zn
given the underlying hn (called the prior distribution),
(2) generation of an expressive performance xn given the
interpretation sequence zn and music score features cn
(called the generation distribution), and (3) generation of
the interpretation vector zn given a true human perfor-
mance xn (called the inference distribution). Finally, the
true or the generated expressive performance xn and the
interpretation vector zn are used to update the underlying
hn, used then to predict the next interpretation vector zn+1.

3.3.1 Generation

We assume the following generative process:

p(x≤N , z≤N |c≤N ) =

N∏
n=1

p(xn|zn, cn)︸ ︷︷ ︸
generation

p(zn|x<n, z<n)︸ ︷︷ ︸
prior

.

(1)
Thus, the data is generated autoregressively by sampling
zn from the prior, generating xn, and feeding it back to the
prior to sample the zn+1 for the next note in the score.

For the prior distribution, the previous RNN state hn−1
passes through a three-layer densely-connected [10] fully-
connected network with 250 units each with a leaky ReLU
nonlinearity. By dense connection, we mean that the input
to the current layer is a concatenation of the outputs of
previous layers. It outputs the mean and log-variance of
a Normal distribution µ(hn−1) and γ(hn−1). Then zn is
sampled as follows:

zn|hn−1 ∼ N (µ(hn−1), exp(γ(hn−1))). (2)

From the interpretation vector zn, we pass it through an-
other feature extractor ψ(zn) to obtain a feature that de-
scribes the current musical interpretation. ψ(·) has the
same three-layer architecture as mentioned above.

For the generation of xn, we use the sampled interpre-
tation vector zn and the current music context cn:

xn|zn, cn ∼ g(cn, ψ(zn)), (3)

Performer 3Performer 1 Performer 2

Take 1

Take 2

Take 3

Take 4

Figure 6. Visualization of the interpretation sequence, for
different takes of three professional pianists. Horizontal
axis indicates the music score position, vertical axis indi-
cates the pitch, and the color indicates 3D projection of the
temporally-smoothed interpretation vector.

where g(c, z) indicates a Cartesian product of categorical
distributions over the one-hot representations of the veloc-
ity, the micro-onset timing, the duration and the tempo, pa-
rameterized by an output of a three-layer fully-connected
network with leaky ReLU nonlinearity for the hidden lay-
ers and softmax for the output layer, applied separately for
the four output variables.

To recurrently update hn, we extract a feature vector
from xn by passing it through a network φ(·) with a same
architecture as ψ to obtain φ(xn). Then, the underlying
state hn is updated as follows:

hn+1 = f(hn, [cn, φ(xn), ψ(zn)]), (4)

where f(h, x) is state update equation of a stacked GRU
of three layers, given h as the current state variable and x
as the input that has been embedded to 64 dimensions by a
fully-connected layer.

Let us elaborate on the modeling assumptions. First,
the prior in Eq. 2 is independent of cn. This forces zn to
express music interpretation abstractly, such that it is de-
coupled from the musical context, which provides strong
hints on how to execute the performance given an interpre-
tation. Second, xn and hn depends only indirectly via the
bottleneck zn. This is unlike the original formulation of
VRNN where xn and hn are directly dependent. We found
that such a bottleneck is vitally critical for learning a mean-
ingful representation of zn; if xn depends on hn, then the
model simply learns to generate an auto-regressive model
of xn using ht, almost completely bypassing zn. Such an
error mode occurs because it is much easier for a model
to learn to simply predict the next note, instead of having
to go through the hassle of trying to explain how it could
have varied with a different interpretation.

3.3.2 Inference

In addition to the generative process, we also define an ap-
proximate posterior distribution, or the inference distribu-
tion, so that variational technique can be used to train the
model [14].

We assume the following dependency for the inference
distribution:

q(z≤N |x≤N ) =
N∏

n=1

q(zn|x≤n, z<n)︸ ︷︷ ︸
inference

. (5)
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different performers at each note.

If we assume that zn is normally distributed and condition-
ally independent of z<n and x<n given hn−1, it becomes:

q(zn|x≤n, z<n) = q(zn|xn, hn−1)

= N (zn|η(hn−1, φ(xn)) , exp (ν(hn−1, φ(xn)))) , (6)

where η(·) and ν(·) are the outputs of a neural network
with the same architecture as ψ(·), that take φ(xn) and
hn−1 as the inputs. The inference is independent of the
music score cn, so that it learns a repertoire-agnostic
model for inferring zn given an expressive human playing.

3.3.3 Training

We train the model by minimizing the KL divergence from
the approximate posterior to the true posterior. It amounts
to the minimizing of the following note-level loss ln(Θ)
w.r.t. the set of model parameters Θ, accrued over every
note in the training data:

ln(Θ) = Ezn∼q(z|xn,hn−1) [log p(xn|zn, cn)]

+ KL(q(z|xn, hn−1)||p(z|hn−1)). (7)

The expectation is computed using the reparametrization
trick [14]. We use truncated backpropagation with trun-
cation length of 30 notes (longer truncation length of 50
notes yielded qualitatively similar outputs). We also aug-
ment the data by adding zero-reverting Wiener noise to the
tempo curve and randomly transposing each piece by -7
to 7 semitones at every epoch. To minimize the loss, we
use Adam [13], with gradient clipping for gradient values
above 5.

3.4 Analysis of the learnt manifold of the
interpretation vector

We briefly illustrate the essences of musical expression ac-
quired by the interpretation sequence. Figure 6 shows the
interpretation sequence of first 20 bars of Mozart’s K333
piano sonata, mvt. 1 (from the top to the introduction
of second subject group), played by three professional pi-
anists for multiple takes. The figure shows that the inter-
pretation sequence tends to remain similar within each per-
former, and different among different performers.

We can also show where in the music score has the high-
est variance of interpretation vector among the nine takes.
Figure 7 shows the variance for each note, from which we
can see that the maximum variance occurs at the structural
boundary from the first subject group to the transition, sup-
porting findings that music expression varies significantly
at structural boundaries [19].

4. EVALUATION

We evaluate our method’s capability to (1) create a natural
expressive performance given the music score, and to en-
code an expressive performance into (2) perceptually rel-
evant space that is (3) representative of the corresponding
performance. For training, we used an in-house dataset
comprising of 380 classical pieces, mostly Late romantic
and Baroque. The piano performance comprised of 130 in-
house performances and 250 performances obtained from
the piano e-competition archive 1 . Some performances
were different interpretations of the same piece. Further-
more, corresponding music scores were obtained. To gen-
erate a one-to-one mapping between the performance and
the score, each performance was aligned to the music score
using symbolic music alignment based on [16] with man-
ual alignment correction. Then, the notes in the perfor-
mance and the score were matched using maximum bipar-
tite matching, using the pitch and the onset timing to deter-
mine the edge weights between notes in the score and the
performance.

We have used 370 of 380 pieces for training. Of 370
pieces, all but 500 notes were used for training, and re-
maining notes for the optimization of the hyperparameters
(validation). To test the decoder in experiment 1 and 2,
we have sampled 10 piano music scores from the Mutopia
project 2 , and corrected the key signature, meter and down-
beat positions. It contained a wide variety of pieces from
Baroque to Ragtime. To test the encoder in experiment 3,
we have used 10 pieces of 380 pieces that were not used
for training.

4.1 Listening test

We evaluated the naturalness of the generated performance
using different methods. For each of the ten pieces, we ex-
tracted a random 15-second segment, and generated per-
formance using three methods: (1) method Deadpan di-
rectly played back the SMF data of the music score data
that has been exported from MakeMusic’s Finale Version
25; (2) method Finale used "Human Playback" function
of Finale to create a natural performance, serving as a re-
producible reference music performance method; and (3)
the proposed method. Furthermore, we extracted seven
15-second excerpts from human playback in the training
dataset, which serves as an oracle method. The selected
pieces were different from the first three methods, because
the human playing data to the first three were not always
available. To make a fair comparison, we removed the sus-
tain pedal data from the oracle, because the pedal is con-
tained in none of the other methods.

Next, the MIDI data were synthesized using a high-
quality piano synthesizer and presented in a random order
to 11 participants. The participants were asked to evaluate
the naturalness and expressiveness, on a rating from 1 to
5, 1 being unnatural or unexpressive, 3 being moderately
natural or contains some expression, and 5 being the most

1 www.piano-e-competition.com
2 www.mutopiaproject.org
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Table 1. Mean opinion scores of the performances
Deadpan Finale Proposed Oracle

Naturalness 3.02 3.08 3.29 3.23
Expressiveness 2.75 2.98 3.14 3.62

natural or expressive. The participants were between age
25 and late fifties, working on music technology.

The results are shown in Table 1. Kruskal-Wallis H-test
was used for test of significance (p < 0.01), since Shapiro
test showed non-normality. We found that the effects were
significant for both expressiveness and naturalness, for all
of the method pairs.

This shows that the system is capable of generating a
performance that is as natural as human playing, but the
expression has a room for improvement. One possible rea-
son is that the system does not make use of music score
markings like expression and phrase markings. The audio
on our demo webpage suggests nonetheless that the system
learns to “improvise” a noticeable evolution of musical ex-
pression over a timespan of multiple notes.

4.2 Test on the perception of the interpretation vector

Second, we analyzed the capability of the interpretation
sequence to create a perceptually distinguishable and con-
sistent space of musical interpretation.

First, a pair of non-identical and non-overlapping seg-
ments were sampled from a piece, which we call segments
A and B. Second, a vector ∆ was sampled from a 5-
dimensional, zero-mean and unit-variance Normal distri-
bution. Third, two interpretations are generated for each of
A and B, where rendition A1 and B1 are generated with
interpretation vector µ(hn−1) + ∆ ⊗ exp(γ(hn−1)), and
A2 and B2 with µ(hn−1) − ∆ ⊗ exp(γ(hn−1)). Fourth,
A1, A2, B1 andB2 were successively presented to the par-
ticipants, randomly presenting B2 before B1. They were
asked to identify whether the relationship of music ex-
pression between A1 → A2 is the same as B1 → B2 or
B1←B2. The participants rated the perceived relationship
with a confidence on a two-point scale 2 (0 means cannot
tell, 2 means strongly confident about the response). We
repeated this experiment on 9 other pairs of segments. Af-
ter the experiment, we changed the signs of the responses,
such that negative confidence indicates the wrong guess
(A1 → A2 is B1 ← B2), and positive indicates the right
guess (A1→A2 is B1 → B2).

The average rating was 0.34, meaning that there is an
agreement between the change of interpretation vector and
human perception of interpretation. To test the signifi-
cance, Wilcoxon signed rank test was used under the null
hypothesis that the median rating is zero, since Shapiro
test showed non-normality. The effect was significant with
p < 0.01.

This shows that the encoder does capture a perceptually
coherent space of music interpretation, and its modifica-
tion creates a perceptually consistent difference in the in-
terpretation. Qualitatively, we found that by changing the
interpretation vector, there are simultaneous and smooth

Table 2. Pearson’s correlation coefficient between the gen-
erated performance and the true performance.

Num. notes zn = 0 zn∼ prior

Velocity
10 0.61 0.72
40 0.37 0.68

Onset 10 0.02 0.07
deviation 40 0.19 0.24

Duration
10 0.77 0.77
40 0.82 0.82

BPM
10 0.07 0.21
40 0.00 0.14

changes not only in the dynamics and the tempo but also
nontrivial aspects like breaking of the chords or the articu-
lation of the accompaniment.

4.3 Test on the predictive capability of the encoder

Finally we evaluated the capability to encode a given per-
formance, by priming h and z with an encoded true hu-
man performance, and comparing the true human and the
generated performances. First, we primed the decoder by
feeding to the encoder the first 20 notes to a performance
to infer the initial value of zn. Next, the remaining 10 or 40
notes were decoded using two different decoders: (1) use
zn sampled from the prior that has been primed in the first
step, and (2) fix zn = 0. We repeated this experiment on
100 different starting points, and evaluated the Pearson’s
correlation coefficient between the generated and human
performance.

Table 2 shows the correlation coefficients. The result
shows that the encoder is capable of encoding information
pertinent to music performance. Significant improvements
are seen for the velocity and the tempo, showing that the
interpretation space is captures these aspects. At the same
time, there are still rooms for improving the prediction of
the onset deviation and the tempo.

This shows that we can indeed feed a reference perfor-
mance snippet to the system, and the system would gener-
ate a performance in style of the snippet.

5. CONCLUSION

We have presented music performance rendering method
that explicitly encodes underlying sources of expression
variations. Our method opens door to wider possibilities
for the co-creation of music performance between a ma-
chine and humans, by enabling an interpretable and ad-
justable performance rendering and analysis system. We
also believe the capability to decouple musical intent and
its execution given the intent opens door to a new abstrac-
tion layer for performance analysis.

Future work includes the inference of additional outputs
like the pedals and note-off velocity, better expressiveness
through incorporation of music score markings, disentan-
glement of the latent space and interfaces for interactive
music performance rendering.
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