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ABSTRACT
Musical ensemble between human musicians and computers is
a challenging task. We achieve this with a concert-quality syn-
chronization using machine learning. Our system recognizes
the position in a given song from the human performance using
the microphone and camera inputs, and responds in real-time
with audio and visual feedback as a music ensemble. We ad-
dress three crucial requirements in a musical ensemble system.
First, our system interacts with human players through both
audio and visual cues, the conventional modes of coordination
for musicians. Second, our system synchronizes with human
performances while retaining its intended musical expression.
Third, our system prevents failures during a concert due to
bad tracking, by displaying an internal confidence measure
and allowing a backstage human operator to “intervene” if the
system is unconfident. We show the feasibility of the system
with several experiments, including a professional concert.

ACM Classification Keywords
H.5.1. Multimedia Information Systems: Audio input/output;
H.5.5. Sound and Music Computing: Signal analysis, synthe-
sis, and processing; J.5. Arts and Humanities: Music

Author Keywords
Human-machine Music Ensemble; Multimodal Interaction;
Machine Learning; Score Following; Live Concert System

INTRODUCTION
When human musicians perform in a music ensemble, they in-
teract with each other to enrich the musical expression. During
the performance, they would dynamically change the tempo
and the articulations on the spot, coordinating with each other
through eye movements, various gestures, and auditory cues.
To make computers to imitate such interactions has been de-
sired for decades. We show a practical concert-quality system
for achieving this challenge. Our goal in this study is to realize
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a machine with the capability to coordinate timing with human
musicians, as a human musician would.

A possible approach is automatic accompaniment using score
following [10]. Score following technique recognizes the
corresponding position in a given song from the audio of hu-
man performances, and plays back the machine part (e.g.,
the accompaniment part). However, through a preliminary
user study, we found this technique has three serious prob-
lems for coordinating the timing between a machine music
sequencer and human musicians in real-time. First, it requires
the recognition and generation of auditory and visual cues, but
incorporating such multi-modal cues is difficult by existing
works. For example, musicians nod to each other to antici-
pate the timing of the beginning of a piece; at the same time,
once the music starts, they would listen to each other to grasp
the ebb and flow of tempo. Second, the machine should syn-
chronize to human musicians while retaining its expression of
tempo, but the balance between these conflicting goals change
dynamically during the piece. For example, when the machine
sequencer is playing the melody, the human players would
follow the machine sequencer and appreciate its sequenced nu-
ances. Conversely, when the humans are playing the melody,
the human players would prefer the machine to follow them
while retaining its nuance. Finally, the system must never fail
during a concert, but such a guarantee is difficult to make with
a fully automatic coordination system. That is, the tracking of
the subtle multi-modal cues in music ensemble is a difficult
task that is prone to errors; yet, if the machine responds highly
incorrectly, the concert would be ruined, which is fatal as a
professional staged event.

To address these problems, we propose a novel music ensem-
ble system, MuEns, that enables a multi-modal, flexible and
error-robust music ensemble between human musicians and
a machine (Figure 1). Our system integrates the auditory and
the visual cues of human performers, and reacts to them with
an automatic playback of a pre-recorded music data (in stan-
dard Musical Instruments Digital Interface (MIDI) file) and a
pre-choreographed visual feedback. It also balances between
synchronizing to the human musicians and retaining the mu-
sical nuance of the pre-recorded music data. To avoid the
potentially critical errors of the automatic tracking algorithm
during a live concert, our system also allows a human operator
to intervene on-the-fly and guide the system.

We describe how our system was improved through an iter-
ative design process. Our first trial was a pilot study with a
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Figure 1. The system overview. Our system takes as inputs the audio signals from the microphone and movies from the camera of each human player.
The system responds to human performances using machine learning-based tracking algorithm, and outputs (1) pre-recorded MIDI data that drives
the actuated piano and (2) pre-choreographed visual feedback data that represents the behavior of the system. The training data, required for tracking
the playback position of the stage performance, is recorded during the rehearsal. To avoid fatal errors, a human operator observes the confidence of
the system and manually intervenes as necessary.

preliminary design of the system in preparation. To overcome
the problems encountered in this pilot study, we designed the
final system and had a professional concert to assess its feasi-
bilities. Finally, we show the results with the reception of the
audience, and summarizing the rehearsals and the interviews.

Our contributions are as follows:

1. We present a novel multi-modal music ensemble system
that recognizes and generates both auditory and visual cues,
enabling a tight coordination between human musicians and
a machine.

2. We present a musical coordination algorithm that enables to
adjust the musicality and synchronicity of the machine dur-
ing the performance, where the adjustment is bootstrapped
automatically and refined through manual annotations.

3. We present a mechanism for preventing serious errors dur-
ing a concert, by allowing an optional human operator to
manually intervene with the system during the concert.

4. We show, with several experiments including a professional
concert, a concert-quality system for music ensemble be-
tween the humans and a computer with machine learning.

RELATED WORK
Score Following: Score following is the technique to contin-
uously track the position of human performance in a given
music score, and is a critical component in automatic music
accompaniment. The key point of a score follower is to jointly
express (1) the similarity between the current observation and

the expected observation in each position in the music score
and (2) the allowed temporal evolution of the score position.
This is achieved through probabilistic inference [14, 28, 6] or
path optimization [8, 15, 2]. Furthermore, since the temporal
evolution is better captured by explicitly expressing the transi-
tion of the underlying tempo, the underlying tempo curve is
often inferred as well [28, 35, 6, 18, 23, 24].

Current score following systems do not recognize visual cues,
which human musicians use for coordinating parts of the music
where no one is playing [31]. For example, nodding gestures
are often used to synchronize the start of a song. While some
studies do use visual information, such as the periodic hand
motion of a guitarist [16], they are intended to improve the
tracking of what is already trackable using audio signal alone;
yet, visual cue is critical when the audio signal alone is insuf-
ficient for tracking the human musicians. The importance of
cues in a music ensemble system has been pointed out [13],
but has not been applied for automatic accompaniment using
score following. In a similar problem of beat tracking, visual
information has been incorporated to aid tracking [21, 4].

Automatic Music Accompaniment: There are some systems
that use score following to create a machine accompaniment
that synchronizes to human players [29, 5]. There are three
important issues in automatic accompaniment. First, the ac-
companiment should not only synchronize to humans, but also
sound musical. In other words, an ensemble system should
encode the musicality of the machine part and encode how it
should coordinate. Second, the musicality of the machine part
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should be adjustable: performers may want to change the co-
ordination strategy or nuances, so the system should respond
to these requests, or at least be adjustable by a human operator.
Third, to use the system in a professional concert, a scheme
to guarantee a failure-free concert is required [26] – the show
must go on even if the score follower makes mistakes.

To achieve these goals, Antescofo system [5] allows program-
ming of electronic events that are synchronized to musicians,
and allows the music composer to choose what kind of syn-
chronization is required. However, it is incapable of balanc-
ing the musicality of the machine part and synchronization.
Safety measures against failed tracking is achieved through
the choice of a conservative synchronization algorithm with
a limited flexibility to follow the musicians. Such a scheme,
however, requires the composer to anticipate everything that
might go wrong on stage, that might adversely affect the score
follower; this is a difficult task for the composer.

Music-plus-one system [29] uses a dynamic Bayesian network
to learn the temporal pattern of the machine and the human
players [27]. It is, however, incapable of directly describing
how the machine and the human players should coordinate.
Safety measures against failed tracking is achieved by report-
ing the output of the score follower only when its confidence
has increased significantly. This kind of approach, however,
is incapable of handling mistakes where the score follower
confidently reports wrong positions; this kind of error occurs,
for example, a piece contains many short repeated segments.

To jointly learn the coordination strategy and musicality, elab-
orate machine learning approaches have been proposed [32,
33], but they require multiple annotated instances of ensem-
ble among humans for each piece to play, making it costly to
prepare a working system.

Other Interactive Music Systems: Instead of automatic ac-
companiment, the accompaniment may be controlled manu-
ally, for example, through tapping of the beats [9] or conduct-
ing [1]. In these systems, the musicality between the human
and the machine is balanced by adjusting the tempo based on
the human input and a template tempo curve. Such a manually
controlled system is robust because the tracking of the human
musicians is delegated to a human operator. It however needs
a human to control the system during the entire performance.
It thus requires high musical skills for the operator, as the
operator participates as a musician in the ensemble.

Furthermore, in one extreme of human-machine music ensem-
ble, a human could play along with an accompaniment data, a
la karaoke. In this case, tighter coordination is possible if the
human could anticipate the machine behavior through a visual
feedback [34]. Visual feedback allows the user to anticipate
the upcoming notes played by the system. However, since
the system is incapable of following the user, it is impossi-
ble for the user to express music through tempo changes. At
the other extreme, the machine could generate a completely
improvisatory response to human playing [25], but such an
approach is inapplicable if the machine should play back a
specific accompaniment in sync with the user.

PRELIMINARY USER STUDY
To design the system, we have collaborated with four top-level
string instrument players (violin, viola, cello, and double bass)
from the Scharoun Ensemble of the Berliner Philharmoniker,
and have conducted the design process iteratively together
for two months. We used the fourth and the fifth movements
of the “Trout” quintet by F. Schubert for the experimental
song. The piano part was played by a Yamaha Disklavier
player piano, driven by the proposed system. The Disklavier
player piano is an acoustic piano that can be driven from an
external device using the MIDI protocol. The MIDI sequence
data of the player piano was created by a professional pianist
who recuperated a recording of the “Trout” quintet from 1980,
played by Sviaslatov Richter, a legendary Russian pianist of
the 20th century, and the Borodin Quartet. The performers
were told that this is an experiment towards a concert featuring
an ensemble between legendary musicians of the 20th century
and the 21st century, bridged using computer technology.

We first investigated how human players perform with each
other and with a computer using the preliminary system. Upon
the pilot study, we designed our final system and had a profes-
sional concert to validate its feasibilities.

Design Strategy and Implementation
To investigate how human musicians play with each other,
we begin with three assumptions for music performance: (1)
auditory information is sufficient to enable the coordination
between the musicians, (2) the sequence of playing speed at
each position in the song (tempo curve) of the human per-
formers would fluctuate about a default tempo curve with a
constant variance throughout the piece, and (3) the extent to
which the system should fix its timing is fixed throughout the
piece. Under these assumptions, the system was designed such
that it tracks the fluctuation of tempo about a fixed trajectory,
using the audio signal of human musicians’ playing.

Our first prototype system is shown in Figure 2. The system
takes audio data of each player from microphones as input,
and follows them with playback of a pre-recorded MIDI data
by a player piano. The system consists of two sub-systems:
Score follower and Coordinator. The score follower estimates
the corresponding position from the microphone input using a
hidden Markov Model (HMM). Using this timing information
emitted from the score follower, the coordinator estimates the
playback position of the pre-recorded MIDI data and sends
necessary MIDI messages to the player piano.

Modeling the Human Performance
We use a hierarchical HMM approach for the score follower.
In this HMM, a time series of the constant-Q transform (CQT)
and ∆CQT from the microphones becomes the observation,
and the corresponding position in a given musical score be-
comes the hidden state. The hidden state is described hierarchi-
cally. Namely, it divides the song into multiple segments, and
each segment consists of multiple left-to-right Markov mod-
els, each n of which subdivides the segment with a different
resolution of the score position and assigns a large probability
for the transition to the next position in the score. Thus, each
state inside each segment is associated with (1) the position
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Figure 2. The preliminary design. The system takes audio data of each player from microphones as input, and follows them with playback of a
pre-recorded MIDI data by a player piano.

in the given song, (2) the expected observation, and (3) the
expected number of frames that is required to play the frame.
This means the selection of n enables the system to roughly
decide the tempo, and the transition probability adjusts for any
mismatch between the expected tempo and the actual playing.
Specifically, if we let r be the segment index, n be the ex-
pected duration inside the segment and l be the elapsed frame
within the segment, we express the state transition in terms
of three cases: (1) state (r,n, l) transitions to itself with prob-
ability 2p, (2) state (r,n, l < n) transitions to state (r,n, l +1)
with probability 1− p, and (3) state (r,n,n−1) transitions to
(r+ 1,n′,0) with probability (1− p)0.5λ−1 exp(−λ |n′− n|)
for some λ > 0. For each position in the score s (which is
associated with one or more state of the HMM (r,n, l)), we
express the likelihood of observing the CQT c ∈ RF and the
∆CQT d ∈ RF as follows:

log p(c,d|s,κs,ηs, c̄s, d̄s) = const.+κscT c̄s +ηsdT d̄s, (1)

where c̄s and d̄s are the representative CQT and ∆CQT at
position s, and κs and ηs are scaling parameters. The expected
values of c̄ and d̄ are extracted from the music score. For
each pair of pitch and instrument i, there is an associated
“template” CQT wi. Then, given hsi, the loudness of pair i at
score position s, the representative CQT is given as follows:

c̄s = ∑
i

hs,iwi. (2)

d̄ is obtained by taking the adjacent difference of c̄s over s and
half-wave rectifying it. The system, after a rehearsal, uses the
history of the tracked position and the recorded audio to update
wi using Poisson-Gamma nonnegative matrix factorization [3].
Here, the prior distribution is based on the tracked position
and the expected notes at each position, similar to [11].

When the nth new note is played at time τn, the estimated
playback position µn and the variance of the estimate σ2

n are
emitted from the score follower. These estimates are obtained
by evaluating the Laplace approximation of the posterior dis-
tribution over the score position. The coordinator receives
(τn,µn,σn) and predicts the playback position of the machine
part at time t, m(t). The coordinator assumes that m(t) is
played by a piecewise-constant velocity vn (playback position

of the score [second]-per-second) with offset xn (playback po-
sition [second]), based on the most recent information received
from the score follower:

m(t) = xn + vn(L+ t− τn). (3)

Here, L is the input-to-output latency of the system (about 300
milliseconds). The coordinator infers vn and xn by assuming
an underlying process given as follows:

xn = xn−1 +∆Tn,n−1vn−1 + εn,0

vn = β v̄n +(1−β )vn−1 + εn,1 (4)

µn ∼N (xn,σ
2
n ), (5)

where ∆Tn,m = τn−τm and N (µ,σ2) is a Normal distribution
with mean µ and variance σ2. ε is a zero-mean Gaussian
noise, the variance of which governs the extent to which the
machine synchronizes to the human players, and how much the
machine part’s tempo may fluctuate based on our assumption.
This model assumes that human players play a given piece of
music with more-or-less a similar tempo trajectory, an useful
assumption in modeling timing across different interpretations
to a same piece of piece [22]. v̄n is the “default” velocity at
position xn, obtained by analyzing the velocity trajectory (i.e.,
the tempo curve) of a music performance of the same piece
by a human ensemble. β is a fixed scalar that determines how
strongly vn reverts to the default tempo. We call this β the
mean-reverting parameter.

Preliminary Experiment
Before using the system with the ensemble, we preliminarily
evaluated the system’s components.

First, the score follower was evaluated quantitatively using
an in-house piano performance dataset. The dataset consists
of ten piano etudes by Burgmuller played by a professional
pianist, and corresponding MIDI files for the system to follow.
We evaluated the piecewise precision [7], the percentage of
the note onset timings reported by the score follower that
are within 300 ms of the correct onset timings. Our system
obtained a piecewise precision of 96%.
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Second, the coordinator was evaluated through a subjective
evaluation using professional pianists. First, we prepared pi-
ano pieces with audio accompaniments. We chose pieces such
that (1) a wide variety of genre was covered, from piano con-
certo to popular music, and (2) the score follower rarely made
significant mistakes. Next, four pianists tested the system with-
out mean reversion (β = 0) for one day, and five pianists tested
the system with mean reversion (β = 0.01) for one day. Note
that coordination without mean reversion amounts to machine
accompaniment that simply smoothes the tempo curve of the
human performer. The participants were asked to write down
any issues, especially those regarding playability. After using
the system, an informal interview with each participant was
held, each spanning one hour. In the interview we asked the
pianists to comment on the overall playability of the system.
The group that tested the system without mean reversion all
commented that the system is unusable because the system
kept on getting slower or faster, perhaps since the machine
kept responding to the tendency for a performer to lead or lag
slightly. On the other hand, the group that tested the system
with mean reversion did not mention this kind of behavior.

These evaluations suggest that (1) the score follower tracks the
musicians adequately in most places but fails at a few spots
and (2) the mean-reverting dynamics is effective over a simple
smoothing of the score follower output.

Experiment 1
The ensemble rehearsed the experimental song using the sys-
tem. This experiment took three hours and was split into three
stages. In the first hour, only the human string players re-
hearsed (without use of the player piano). In the next hour, the
human players rehearsed with a player piano that simply plays
back the MIDI piano data, a la karaoke. Finally, the human
players rehearsed with the player piano using the system.

The ensemble commented that karaoke is “weird” to play and
inviable. Especially for the entrance timing of the piano, the
ensemble noted that “if he [the piano entrance] is a tiny bit
slow, it is not logical... The answer [response of the piano]
doesn’t make sense... because it is too late or too early.”

When using the system, the ensemble commented that it was
“incredibly great” that the entrance timing was timed properly.
However, they noted that “he [the piano] loses his character”
when playing the melody, which was unsatisfactory because
they wanted the “Russian sound” of the MIDI data to be pre-
served. Furthermore, they were dissatisfied that the MIDI
data always tracked the humans; they instead wanted the com-
puter to understand leadership roles. They commented that
“to decide who is leading... is the point about making chamber
music,” and that leadership is determined during rehearsals
because it is “always different [with the ensemble]... [and
is dependent on] personal taste,” even though some parts in
the music are “very clear” on leadership roles. They thought
that the system tracks “wonderfully... like a first-class musi-
cian” when the piano should follow the humans, but “makes
stupid mistakes” at places. During these “stupid mistakes,” the
ensemble could not continue on playing.

Discussion
Through this study, we had found several problems in our first
design strategy.

First, the ensemble was dissatisfied that the music expression
of the piano data has changed as a result of tracking humans
too much. This kind of problem occurs for two reasons. First,
the value of the mean-reverting parameter β that is appropriate
for tracking humans is different from the value that is appro-
priate for retaining the original tempo curve of the piano v̄n.
Second, the parameters of the coordinator, vn and xn, change
only when the human players play a new note. This kind of
logic ignores how the piano part has been played so far. For
example, if, in a given phrase, there are many notes played by
the piano, vn should change more smoothly than if the piano
is not playing. Thus, synchronization and playing of the piano
part must be treated independently and be adjustable.

Second, the ensemble fell apart when the human players ex-
pected leadership roles while the machine synchronized to
humans. This kind of problem occurs because the extent of
synchronization, specified through ε , is fixed, but the musi-
cians expect such an extent to change within a piece of music.
Therefore, a mechanism to specify the degree of synchroniza-
tion at selected segments in a piece is necessary.

Third, the coordination between the human musicians and the
machine was poor when both parts played after a long pause.
For example, the beginning of fifth movement requires the
piano and strings to start simultaneously, but it was impossible
to coordinate the starting timing from silence. This kind of
problem occurs because the machine neither provides nor
understands visual cues, which the human musicians use to
complement audio information.

Finally, the ensemble fell apart when the score follower made
mistakes. Specifically, when the score follower lost track of
where the human players are playing, the system generated
highly inconsistent responses. This kind of inconsistency at
best confused the musicians and at worst made the ensem-
ble unplayable. For a successful live performance, safety
measures are required to guarantee that the performance will
proceed, even if the score follower makes mistakes.

DESIGN OF MuEns
Based on the preliminary study, the design has been changed
to that as illustrated in Figure 1. We call this system MuEns.
The system takes audio and visual data of each player from
microphones and cameras as the inputs, and follows them with
the playback of (1) a pre-recorded MIDI data by a player piano
and (2) a pre-choreographed motion data that expresses cueing
gestures of a pianist. The system consists of the Score follower
and the Coordinator to track and coordinate the playback.

This system provides three advantages over the preliminary
system. First, synchronization is possible at points where au-
ditory cues are unavailable, thanks to the integration of audio
and visual informations. Second, a more fluid ensemble is
realized through the modification of the underlying coordina-
tion algorithm. Third, a safety measure is provided in case the
score follower fails, by allowing a human operator to intervene
and take control over the system when necessary.
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Figure 3. Detecting the visual cue motions. The blue line represents
the motion feature. When a human player conducts a cue gesture, its
trajectory draws two peaks beyond a threshold across a minus dip on
the timeline. If the time interval between the two peaks is sufficiently
close to the current beat duration, the system recognizes it as a cue.

Method
Visual Recognition and Response
The ensemble system needs a capability to both recognize
and generate visual cues, depending on which instrument has
the initiative at a given phrase. When musicians start a new
phrase, the player who has the initiative in the new phrase
would give a cue gesture at one beat before the start of a new
phrase. For example, to start a piece of music, the musician
who plays the melody would nod to anticipate the entry timing.
Similarly, a nodding gesture is used to recover from a fermata,
a note that is held arbitrarily long. Visual cue is important in
these situations because auditory information is insufficient
for timing coordination. Thus, when the human players have
the initiative, the ensemble system must recognize the human
players’ cues to coordinate the starting timing. Conversely,
when the machine part has the initiative, it should present cues
to the human players for coordinating the starting timing.

To handle the case that humans have the initiative, we use
visual information from the camera attached on each music
stand. We call this subsystem the motion detector. The motion
detector computes the time series of the average of the optical
flows ut within all the pixels from the camera images, where t
denotes the frame number. We define the motion feature as the
time series of the accumulated inner product It = ∑

t−1
i=tprev

ut ·ui,
where tprev determines how number of the previous frames
are considered. When a human player conducts a cue gesture
(Figure 3), (1) the motion feature first increases (moves a cer-
tain direction continuously), and after exceeding a threshold,
(2) it decreases to minus value (turns back to the opposite
direction), and (3) it again increases subsequently (back to the
natural position). This trajectory draws two peaks beyond a
threshold across a minus dip on the timeline. When the motion
detector detects this trajectory, we compute the time difference
between two peaks, and compare it to the current estimated
beat duration (the inverse of the tempo) by the score follower.
If both times are sufficiently close, the motion detector rec-
ognizes it as a cue motion (we assume the tempo of a song
would not change rapidly), and sends the expected timing of
the next beat to the score follower.

During the stage performance, the score follower receives
the cue informations from the motion detector as described

Figure 4. The imaginary pianist-like projection indicates the timing and
the tempo to begin a new phrase, when the machine has the initiative to
start the phrase.

above. Additionally, during the rehearsals, we annotate the
positions {q̂i} in the musical score where visual cue might
be expected. When the detected cue position is sufficiently
close to one of the {q̂i}, the score follower sets the likelihood
of the positions ∪[q̂i− τ, q̂i] for τ > 0 to zero. This leads the
posterior distribution to “avoid” score positions before the
cue positions. Unlike the existing method based on top-down
integration of cues [21], with the bottom-up integration of
the visual information to the HMM-based score follower, the
uncertainty of audio input can be preserved.

On the other hand, when the system has the initiative for the
beginning timing of the next phase, the system indicates the
timing to the human players by a visualization (Figure 4), sim-
ilar in spirit to [34]. This visualization is projected on the floor
among the human players (quartet). The motif is the shadow
of an imaginary pianist. This imaginary pianist indicates the
timing and the expected tempo to begin the next phrase with a
pianist-like cue motion (up and down the arms with waving
the body) driven by the system. Each player easily sees this
visualization ahead of each music stand. The cue motion of the
imaginary pianist can be controlled by two parameters. The
first parameter is the amplitude that determines how vigorously
the pianist moves. The second parameter is the duration of the
motion generated by the pianist. Usually, the amplitude is set
according to the strength of the next note. The duration can be
set according to the playing beat duration (inverse tempo); in
practice, we set it to 1.5 times the current beat duration by de-
fault. We annotate these parameters in the music score during
the rehearsals, and during the performance, the system begins
the motion when the playback position reaches the annotated
position. Additionally, the imaginary pianist continuously un-
dulates, driven by the starting of new notes by the player piano
(please see the supplemental video); this roughly informs the
players about the system’s playback tempo.

Expression-Preserving Coordinator
In order to coordinate the timing, the system plays the follow-
ing position m(t) at time t:

m(t) = xC,n +(L+ t− τn)vC,n. (6)

Variables vC,n and xC,n are the velocity and the temporal offset,
respectively, obtained when the most recent note is played,
either by the machine or humans, at time τn (i.e., n notes have
been played so far).

The system generates the velocity vC,n and offset xC,n by co-
ordinating between where the humans are playing and where
the machine “wants” to play.

First, in order to express where the human players are play-
ing, we assume that humans play with a piece-wise constant
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velocity vP,n between τn and τn+1. In other words, we express
the score position played by human players as follows, where
xP,n is the position played at time τn and εP,n ∈R2 is an additive
Gaussian noise:

xP,n = xP,n−1 +∆Tn,n−1vP,n−1 + εP,n,0 (7)
vP,n = vP,n−1 + εP,n,1. (8)

Here, we let ∆Tm,n = τm− τn. Additive noise εP,n contains
the change of tempo and the deviation of the timing from the
piece-wise constant velocity assumption.

Second, in order to express how the machine “wants” to play,
the model sets the tempo curve of the machine part about a
“default” tempo trajectory. The system assumes the position
xM,n and speed vM,n evolves as follows:

xM,n = xM,n−1 +∆Tn,n−1vM,n−1 + εM,n,0 (9)
vM,n = βnvM̄,n +(1−β )vM,n−1 + εM,n,1. (10)

Here, vM̄,n is the default tempo at the position reported by the
score follower at time τn, and εM,n is an additive Gaussian
noise. βn ∈ [0,1] is a parameter that governs how strongly
the machine part “wants” to revert to the default tempo vM̄,n.
We call this the machine-reverting parameter. This model is
similar to the coordination strategy in the preliminary design,
except (1) the machine-reverting parameter is dependent on
the score position and (2) the model describes the temporal
dynamics of only the machine part.

Third, to coordinate the timing between the human playing
and what the machine “wants” to play, the two timing models
are coupled together. Specifically, the timing of the machine
part is corrected by the human parts’ predictions. This kind
of model is inspired by the first-order, linear phase and pe-
riod correction model used in the human perception of rhyth-
mic coordination (sensorimotor coordination) [30]. We call
the strength of correction the coupling parameter γn ∈ [0,1].
Given the coupling parameter, the playback position and the
tempo at time τn is given as follows:

xC,n = xM,n + γn(xP,n− xM,n) (11)
vC,n = vM,n + γn(vP,n− vM,n). (12)

In this model, γn affects the extent of correction; at the extrema,
the machine ignores the humans when γn = 0, and the machine
tries to perfectly synchronize with the humans when γn = 1.
The variance is a weighted combination of both the variance
of the machine part xM,n and the humans xP,n, allowing the un-
certainties of both models to be mixed naturally. We bootstrap
γn with a symbolic analysis of the music score, and allow γn to
be overridden through manual annotation. Symbolic analysis
provides the initial basis for coordination such as the clarity of
rhythm [20, 12], and overriding incorporates the preferences
of the human musicians, similar in spirit to music conducting
systems [1]. Specifically, to bootstrap the coupling parameter
γn from the musical score, we compute the density of the note
onsets φn ∈ R2, where φn,0 and φn,1 contain the moving aver-
age of the note density of the machine part and the human part,
respectively. We then assume that parts with more note onsets
lead the ensemble, and set γn = (φn,1 + ε)/(φn,1 +φn,0 +2ε)
for some small ε > 0.

Pitch

Score 
position

Figure 5. The operating view during the performance. The system
displays the internal confidence and a backstage operator monitors it.
If the internal confidence decreases, the operator can fix it (relevant UI
elements are highlighted for clarity).

Finally, the timing reported by the score follower, i.e., µn and
σn, is incorporated as an observation from the coordinator:

[µn,µn−1, · · · ,µn−In ]

∼N
(

Wn[xP,n,vP,n],diag([σ2
n ,σ

2
n−1, · · · ,σ2

n−In ])
)
. (13)

Here, In is the length of history considered, set such that all
note events that have occurred one beat before τn are contained.
Wn contains the linear prediction coefficients to predict µn
from xP,n and vP,n, given as follows:

WT
n =

(
1 1 · · · 1

∆Tn,n ∆Tn,n−1 · · · ∆Tn,n−In+1

)
. (14)

For a real-time inference during a live performance, the sys-
tem updates the timing models when (1) receiving (τn,µn,σ

2
n )

from the score follower and (2) the machine part plays a new
note. Since the model is linear-Gaussian, the coordinator may
be updated highly efficiently as a Kalman filter [19]. When
receiving (τn,µn,σ

2
n ) from the score follower, the system per-

forms the predict and the update steps of the Kalman filter to
update the state variables {xC,n,vC,n,xM,n,vM,n,xP,n,vP,n}. Fur-
thermore, when the machine part plays a new note, the system
replaces the state variables by the predicted values from the
predict step of the Kalman filter.

Manual Intervention
A fully automatic or a fully manual music ensemble system
is difficult to use in a concert. A fully automatic system is
difficult because an automatic tracking algorithm may make
critical tracking errors at few musical phrases that are inher-
ently difficult to track, and ruin the concert. On the other hand,
a fully manual system, say, through having a backstage human
operator “tap” the beats of human musicians [9], is stressful
for the operator [Ai, personal communication], more so in
classical music compared to other genres of Western music
such as jazz, since the tempo fluctuates more significantly and
the duration of a piece tends to be longer.
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Figure 6. Illustration of a human-rooted error. When the human per-
former makes a mistake, the system becomes unsteady. Increased vari-
ance of the posterior distribution indicates this error.

As a compromise, the system uses a semi-automatic ensem-
ble system using human interventions. That is, to prevent a
catastrophic failure of a concert due to the failure of automatic
tracking, the system allows a backstage human operator to
“intervene” in real-time. The system continuously displays the
posterior distribution over the score position (Figure 5). By
displaying the posterior distribution, key signs of failures may
be visualized, allowing the operator to take preemptive mea-
sures. With this system, manual intervention compensates for
the low reliability of a fully automatic system, and automatic
tracking lightens the burden incurred to the operator of a fully
manual system.

There are two main reasons for the system to fail, both of
which are predictable. First, the system may fail because
the human players take unexpected actions, such as playing
wrong notes. Although the follower would use the temporal
dynamics assumed by the HMM to keep track of the posi-
tion, the system will eventually fail if wrong notes are played
consecutively. We call this kind of failure a human-rooted fail-
ure. Human-rooted failure is predictable because the system
loses confidence of the tracked position, seen as an increased
variance of the posterior distribution (Figure 6). Thus, by mon-
itoring the variance of the posterior distribution, the operator
may take preventive measures.

Second, the system may fail because some segments of the
music score is inherently difficult for the follower to track.
We call this kind of failure a content-rooted failure. Content-
rooted failure occurs, for example, in a short repetition; repe-
titions are difficult to track with a first-order HMM because
it cannot “remember” which iteration of the repetition it was
in. A content-rooted failure is predictable because the system
becomes “confident” that it is tracking two or more positions
simultaneously. That is, the posterior distribution exhibits
many prominent peaks (Figure 7). Thus, by monitoring the
number of prominent peaks in the posterior distribution, the
operator may take preventive measures.

If a failure is about to occur or if anything sounds wrong to the
ears of the operator, the operator may intervene in a few ways.
First, a human-rooted error may be prevented by ignoring the
input features, using only the temporal dynamics assumed by
the HMM to track. Second, an operator may hold the position
of the follower at a specified place, preventing the score fol-
lower from advancing. The position may be held by setting the
likelihood of the current position to 1 and everything else to
0. Third, a content-rooted error may be prevented by ignoring
the reported position of the score follower; this is useful if

Figure 7. Illustration of a content-rooted error. A repeated phrase
makes the system unstable. Multiple peaks in the posterior distribution
indicates this error.

the score follower fails for a short time but recovers once a
difficult-to-track segments are over. Fourth, the operator may
directly adjust the tempo and the position of the coordinator.

RESULTS
We used MuEns in a real-world concert, with the support of the
Tokyo University of the Arts. Since a quantitative evaluation
is difficult due to the subjective and irreproducible nature of a
live music performance, we discuss the system in the context
of preparation of the concert and the actual concert. The
repertoire and ensemble are the same as that employed in the
preliminary study. For manual intervention, the system was
operated by one of the authors. In this section, we denote the
comments made by the violinist, violist, cellist and the bassist
as “Vn,” “Va,” “Vc” and “Cb,” respectively.

Rehearsal
We took three, one hour-long rehearsals during the three days
into the concert. The rehearsals were videotaped and the
conversations were transcribed.

During the rehearsal, the machine-reverting parameter and
the coupling parameter were adjusted whenever the ensemble
stopped playing and requested the behavior of the system to
be changed. The machine-reverting parameter was adjusted
based on how much “character” of the piano part needed
to be retained. Thus, the ensemble initially commented on
the musicality of the piano part, which was used to adjust
the machine-reversion character; eventually, these comments
were eliminated. The bootstrapped coupling parameter was
sufficient in many cases. One of the exceptions included the
first variation of the fourth movement, where the piano has
the melody (low note density) and the ensemble accompanies
(high note density). While the bootstrapping method would
cause the ensemble to lead, the ensemble wanted the piano
to lead instead. In this very passage, the absolute mean error
of onset timing between the piano and the double bass (who
leads the ensemble) decreased from 120 ms (using bootstrap
parameter) to 40 ms (after adjusting the behavior).

As the timing issues were resolved, the ensemble went on to
spend most of the rehearsal matching the nuance of the strings
to the piano. As the ensemble tried to match the nuance, they
requested some tempo and dynamics of the piano part to be
adjusted. Note that this is unlike the preliminary experiment,
where they were skeptical of “manipulations (Cb).”

For visual cue detection, the person giving the cue was agreed
on during the rehearsal. For example, during the rehearsal,
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Figure 8. Setup of the concert.

the ensemble discussed and agreed on the instrument that is
responsible for recovering from a specific fermata.

For visual cue generation, the places to generate the cue have
been decided by a pianist. The ensemble was initially startled
by the gestures generated by the visualizer, which did not
match the dynamics (volume) of the piano part:

What really, really threw me off is that I think good
pianist would never do the same kind of move whether
piano [weak] or forte [strong] (Vn).

The ensemble initially thought that the visualizer is a distrac-
tion. However, after changing the extent of gesture to match
the dynamics of the piano, the ensemble thought the visual
feedback is “super (Cb)” and is useful for coordination. In-
deed, the mean absolute difference of onset timing between
the ensemble and the piano for the entry timings to selected
portions that use visual feedback (parts of the fifth movement
where everyone plays in unison) decreased from 180 ms (no
visual feedback) to 70 ms (visual feedback).

For manual intervention, we found that the critical errors were
all content-rooted and thus were predictable ahead of the per-
formance. To plan the intervention strategy, the operator anno-
tated parts of the piece where the system consistently failed
and practiced the intervention operations. The operator prac-
ticed the intervention operations outside the actual rehearsal
through simulation, i.e., by feeding the system a recording
of the rehearsal to the system and operating the system as to
avoid failures. The practiced operation was executed during
the rehearsals with the ensemble and the actual concert.

Concert
The concert was held on 19 May 2016 at the Tokyo University
of the Arts. The setup of the concert was as shown in Figure 8,
consisting of a piano quintet in a traditional formation, with
the piano driven using a player piano. A projector was used
to display the visual feedback to the musicians, showing the
visualization inside a circle bounded by the four performers.

During the concert, the operator was standing by the stage,
listening to the string players. Of about fifteen minutes of
performance, there were about twenty seconds of manual in-
terventions by the human operator. First, the operator ignored
the score following output in about twelve bars of the piece,
where a repeating sequence made the system highly prone to
content-rooted errors. Second, the operator held the position

that contains a long held note and is also prone to a content-
rooted error. In addition, the operator adjusted the microphone
input gain, so that the sound produced by the player piano
won’t adversely affect the tracking.

Reception of the Audience
The concert was marketed as an ensemble between Sviaslatov
Richter resurrected using an artificial intelligence (AI) tech-
nology and the Scharoun Ensemble. Over five hundred people
attended the concert.

There were about ten posts on microblogs, posted between the
day of the concert and two days after, that mentioned about
the quality of the synchronization. The posts suggest that the
main audiences were (1) tech-savvy persons, interested in AI
applied to music ensemble, and (2) classical music fans. Some
posts mentioned that the synchronization between machine
and humans gave “goosebumps,” and that the timing was “fine.”
About half mention that the performance was “mundane” and
“on the safe side.” One post mentioned that the ensemble
sounded that it was “trying” to keep up with the machine.

A newspaper review [17] mentioned that the audience “gasped”
and “cheered” at the performance, and that a future work is
keeping up with the “spontaneity” of the musicians.

Interview with the Musicians
We describe some comments made by the musicians, through
informal conversations during the rehearsals.

The musicians found that the proposed system, after tuning,
was “one thousand times better (Cb)” and that they have noth-
ing to say about the behavior of the system.

When matching the nuance, the ensemble was confused when
the timing nuance has changed unexpectedly. For example, the
ensemble paused the rehearsal when the nuance of the piano
part has changed, questioning, “why did it do this [change of
nuance] (Vn)?” They thought that it is “weird (Cb)” that the
nuance is “different – too different (Vn).”

Some factors pointed out by the ensemble are still unaddressed
in the system. First, the ensemble commented that it is impor-
tant to listen to a particular instrument:

[Listening to the ensemble] might be sometimes danger-
ous because we [all but a particular instrument] may be
doing strange things. It would be better to just react to
[the particular instrument] in [a particular context] (Cb).

Indeed, the ensemble seemed to naturally listen for a particular
player that keeps the time:

“Good, have we have rhythm in the bass.” This [kind of
inference] is easy for humans (Cb).

Second, they found that it is a “stressful (Vn)” experience to
play with a data with the “same touch [i.e., sequence of note
strengths] (Cb)” and no mistakes. To elaborate, they thought
that they “were not allowed to make mistakes (Vn)” because
the piano data was such. Third, the ensemble found that the
system lacks “humor (Cb).” We believe that this means that
the system responds with the same touch, and is incapable of
responding to the nuance of the human performers.
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Discussion
MuEns enabled the musicians to make music at a higher level
than mere synchronization. That is, the issues initially raised
during the rehearsal with the preliminary system was mostly
regarding the synchronization and how the machine should
respond. On the other hand, the issues addressed with the
proposed system switched to higher musical issues, such as
how the ensemble should play its parts in response to the piano
part. This suggests that the proposed system provides suffi-
cient coordination for the musicians to start making music at a
higher level, that is, coordinating its nuances to the machine.

This kind of improvement is a combined effect of incorpo-
rating the multi-modal cue generation and recognition, the
expression-aware timing model, and the scheme for manual
intervention. First, the visual cue generation and detection
enabled better coordination, allowing humans to coordinate
the starting time of a phrase. The visualization was essential
once the generated gesture was consistent with the generated
piano sound, as suggested by both the musicians’ comments
and the decreased onset timing error. Second, the capability
to adjust the machine-reverting and the coupling parameters
enabled the musicians discuss and fix coordination strategies.
These corrections improved the coordination of the ensemble,
as suggested by the lowered onset timing error. Furthermore,
the resolved timing issues allowed the musicians to discuss
other issues at a higher musical level. Third, when the score
follower failed, manual intervention allowed the musicians
to continue on playing. This was important not only for the
stage performance but also for the rehearsals, since if the piano
part responded erroneously, the ensemble could not match its
nuances with the piano.

The study shed light to further issues that need to be addressed
in the future. The main theme of the issues is allowing top-
level musicians to exhibit a high degree of artistic freedom.

First, we found that as the ensemble got more synchronized
with the system, the music performance got stringent. This is
perhaps the reason why the audiences thought the performance
was on “the safe side.” While this kind of reduced freedom
occurs in inter-human ensemble as well [12], it seemed more
prominent here, as the reviews suggest. We believe this is
attributed to two causes. First, the performers, having en-
countered instances of bad synchronization in the preliminary
design and during the rehearsals, got risk-averse and started
playing safely. Second, the members of the ensemble have
known each other for years, but know the system for only
few hours. Thus, the members, when playing with each other,
are capable of playing highly freely because they know each
other’s playing style well. On the other hand, when playing
with the system, they still could not grasp the expected re-
sponse of the system. Further investigation is necessary to see
if human musicians, after using the system for a long time,
could interact freely with a machine as they would with a
well-acquainted musical partner.

Second, significant time during and between rehearsals was
lost annotating, writing and re-loading the data. This happened
because the proposed system annotates the coupling and the
machine-reverting parameters to the quartet MIDI score data,

using an external MIDI sequencer. Thus, the comments made
by the ensemble needed to be adjusted in a sequencer, writing
as a standard MIDI file, and re-loading the file on the ensemble
system. In the future, tightly knit integration of the annotation
and the ensemble system is essential.

Third, the musicians seem to want a system whose response is
consistently nuanced, but not identically generated. Consistent
response is important because the musicians adjust their play-
ing style to the expected behavior of the system. For example,
the ensemble stopped playing when the piano part responded
highly inconsistently, wondering “why did it do this [change of
nuance].” Thus, if the machine is inconsistent, it is impossible
for humans to conform to the nuance of the machine. While
seemingly contradictory, however, identical playback intim-
idates the musicians. For example, the members found the
use of the system “stressful” because it produces an identical
sequence of note strengths every time; this kind of consistency
intimidated the musicians into thinking that they too cannot
make any mistakes. Instead of an identical playback data, the
musicians seem to want a variation in the data that is consis-
tent with the musical idea behind the music performance. For
example, the ensemble thought that the system felt “different”
from a human, since it lacks the “humor” of a human musi-
cian. To elaborate, each player in a human ensemble infers
the expressive intent of each other and responds accordingly –
indeed, the ensemble adapted their style to match the Russian
nuance of the piano data. On the other hand, the system is
oblivious to the musical idea behind the human musicians’
playing. Hence the system response fails to elaborate on the
musical idea underlying the tracked timing.

CONCLUSION AND FUTURE WORK
This paper presented MuEns, a system for incorporating ma-
chines in a music ensemble performance. It uses audio-visual
cues to track the human players and coordinates the player
piano playback and the visual cue generation. Timing is coordi-
nated such that it balances between how the system should play
and how the system should synchronize to the humans. The
system is useful in a live concert where tracking must never
fail, thanks to the manual intervention mechanism, which
allows a human operator to guide the system through hard-
to-track passages. We have verified the system in a real-life
concert scenario, and confirmed that the viability of system.

We address future works. First, intervention-friendly mathe-
matical model is required, since the decoupling of the score
follower and coordinator complicates the handling of manual
intervention. Second, development of a system with tightly
integrated annotation and playback is important. Since the
time is limited in a professional rehearsal, the playback system
should adapt itself quickly to newly annotated information.
Third, responding with a variability of data is an important task,
especially for relieving the stress incurred to human musicians.
Finally, it is important to develop a system that understands
and responds to the underlying intent of the human performer.
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