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ABSTRACT

In music information retrieval (MIR), beat-tracking is one
of the most fundamental and important task. However, a
perfect algorithm is difficult to achieve. In addition, there
could be a no unique correct answer because what one in-
terprets as a beat differs for each individual. To address
this, we propose a novel human-in-the-loop user interface
that allows the system to interactively adapt to a specific
user and target music. In our system, the user does not
need to correct all errors manually, but rather only a small
portion of the errors. The system then adapts the internal
neural network model to the target, and automatically cor-
rects remaining errors. This is achieved by a novel adaptive
runtime self-attention in which the adaptable parameters
are intimately integrated as a part of the user interface. It
enables both low-cost training using only a local context of
the music piece, and by contrast, highly effective runtime
adaptation using the global context. We show our frame-
work dramatically reduces the user’s effort of correcting
beat tracking errors in our experiments.

1. INTRODUCTION

Musical beat is among the most important factor in mu-
sic [1]. Many MIR systems first analyze the beats as the
starting point, assume the results would be correct, and use
them as a unit for further processing [2–4]. However, al-
though the performance of many MIR algorithms, includ-
ing beat tracking, has improved dramatically through re-
cent deep learning-based approaches [5–10], a perfect al-
gorithm is difficult to achieve in principle, and errors are
bound to occur. In addition, what one interprets as a beat
differs for each individual. There is thus no unique answer
to the question “What is the correct beat?” for a music.
Many existing music pieces also show that the beats we
want vary from time to time [11, 12]. This means that the
ideal beat tracking system needs to produce different out-
puts from a single input depending on the situation. This
is difficult to deal with using machine learning systems.

To address this, we propose an interactive beat-tracking
interface for adapting to a specific user and target music
using a human-in-the-loop approach (Figure 1). In this
system, the user provides feedback for the temporal result
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Figure 1. An overview of the system.

of the system by correcting the error, and the system then
computes the output again. By iterating this interaction
between the user and computer, the system adapts the in-
ternal neural network model (DNN) to the user, allowing
it to produce more desirable results for the user. The user
does not need to correct all errors manually, but rather only
a small portion of the errors that are noticed. The system
adapts the internal DNN to follow the user’s intention and
automatically corrects the remaining errors that the user
has not corrected directly. This enables a dramatic reduc-
tion in the user’s effort to obtain the desired result1 .

To achieve such an online adaptation, we present a
novel adaptive runtime self-attention model (ARSA), in
which the adaptable parameters are intimately integrated
as a part of the interactive user interface. This is a variant
of the self-attention mechanism [13], and similarly to other
models, it connects the entire input sequence (intermedi-
ate feature sequence) globally throughout the target music
piece by the attention map. However, the most significant
difference in the ARSA is not to be pre-trained at all. We
embed the ARSA into an another pre-trained neural net-
work only at runtime and use it for adaptation. This means
that our model architecture changes between the training
and runtime.

Our model is trained using only a local context for the
training dataset and adapts to the user using the global con-
text at runtime. This locally-aware learning reduces the
computational cost during training, and the globally-aware
runtime adaptation allows the effects of locally modified
user feedback to be distributed throughout the entire piece
of music. This strategy is based on our assumption that
the amount of local feedback that the user can practically
provide could be insufficient for adaptation. To assess the
feasibility and effectiveness of the proposed system, we
validate it through a simulation environment and a user
study. In addition, we show the extent to which the pro-
posed system improves the efficiency of error correction in
beat tracking.

1 The supplemental materials: www.yamo-n.org/hilbeats



2. RELATED WORK

2.1 Musical Beat Tracking

The state-of-the-art techniques in beat tracking are ma-
chine learning-based, and use a two-stage processing.
They first compute the beat activation function by a DNN,
which is a probability-like representation of the beat dis-
tribution, from which they then determine the actual beats
by estimating the most plausible tempo trajectory through-
out the target music. Böck and Schedl [6] use a bidirec-
tional long short-tern memory neural network (BLSTM) to
compute the beat activation function. Davies and Böck [5]
use temporal convolutional networks (TCN) to improve the
computational efficiency and the quality of the activations.
To determine the actual beat positions from the beat activa-
tion function, Krebs et al. [14] use a dynamic Bayesian net-
work (DBN), which is approximated as a hidden Markov
model (HMM) solved using the Viterbi algorithm. Some
studies have also reported that the combined modeling of
the beat, downbeat, and tempo improves the beat track-
ing quality [7, 9]. The desired beat tends to depend on
the genre. Böck et al. [8] use multiple pre-trained mod-
els adapted to different types of musical genres, and select
one of them at runtime to the most plausible result. How-
ever, it is difficult to guarantee whether the classification
of the genre would be appropriate.

2.2 Human-in-the-Loop System in MIR

The concept of human-in-the-loop involves humans as a
part of the system. Sonic Visualizer [15] and Dixon [16]
present interactive editing tools for beat tracking. They vi-
sualize the beats, and the user manually corrects the errors.
However, such manual corrections are a burden to the user.
Driedger et al. [17] propose a hybrid method for annotat-
ing beats by manual tapping and through the use of an au-
tomatically computed beat activation function. They cor-
rect the inaccurate tap to be closer to the activation func-
tion. However, this would be difficult to use if the activa-
tion is not sufficiently close to the desired result. Nakano
et al. [18] attempt to improve the accuracy of the singing
voice separation from mixed audio by fine-tuning a trained
DNN at runtime. They use the user-corrected F0 curve as
the new training data for the DNN. This concept is similar
to that of our ours. However, using only a local correction
that the user can provide through practical means might be
insufficient for proper model adaptation.

Songle [19] provides a web-based error correction tool
for several musical factors, including beats, by using
crowdsourcing contributions. HumanGAN [20] also uses
crowdsourced human evaluations as an evaluation function
to determine whether a voice is realistic or not when it
trains a singing voice synthesis DNN. However, we can
not obtain the desired result for a specific user by apply-
ing these approach. Bryan et al. [21] propose an interac-
tive sound source separation method by masking the spec-
trograms on the GUI. The system uses paintable masks to
adapt the internal algorithm. Bazin et al. [22] also present
an inpainting-based control on the spectrogram for sound
synthesis using token-masked Transformers [13] and VQ-
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Figure 2. A graphical user interface for the system.

VAE [23]. Zhou et al. [24] use Bayesian optimization to
efficiently explore the latent space of the melody genera-
tive model and obtain the desired output.

Bongjun and Bryan [25] propose an interactive inter-
face for an effective sound event annotation. When the
user makes a selection, several similar candidate positions
are presented. The user listens to them and labels them
as positive if they are actually the target, and otherwise
labels them as negative. The system uses this feedback
to update the similarity search model such that it shows
more similar candidate locations. Our approach is partly
inspired by them, and uses a similar method for treating
the beats that are expected to be significantly affected by a
user-modification (§.5.3).

3. USER INTERFACE

When the user inputs the target music, the system first dis-
plays the result of the beat tracking on the UI screen as
the initial state (Figure 2). On the screen, the waveforms
of the entire piece of music (top row) and a focused area
(bottom row) are displayed. The user can zoom into/out
of the arbitrary range by pinching in/out on the trackpad
of the PC and check the results by playback. During play-
back, the system represents the beat by making a clicking
sound when the playhead reaches a beat location. The user
listens to it, and if the user finds an error or undesired re-
sult, the user can modify it. After certain modifications, the
user presses the “Re-Opt” button (the blue button), and the
system then starts the adaptation. The progress of the opti-
mization process is displayed on the screen and updated at
each iteration. The user can stop the process at an arbitrary
timing.

To correct the errors by the user, we provide sev-
eral options. These tools are categorized into three
types. The first type is simply editing the beat directory
(Move/Insert/Remove/Lock/Tap). The move tool allows
the movement of the beat position by dragging the mouse.
The insert and remove tools are used to add a new beat and
remove an existing beat. The lock tool is used to fix the
beat positions. By using a tap tool, the user can specify the
beat directly during playback by taping a key on the PC
keyboard.

The second tool type constrains the tempo trajectory,
which affects the distribution of the beats throughout the



entire piece of music (§.5.4). There are two tools. First, the
Tempo Range Limit Setting Tool allows the upper and
lower limits of the tempo search range to be set by a curve
editor. The user can add keyframes at arbitrary points and
set the tempo range using Bezier curves. The system then
excludes tempos that fall outside of this range from the
search. Next, the Tempo Change Flexibility Slider de-
termines the stability of the tempo tracking. The higher
the value is, the more the system allows the tempo to vary
widely throughout the music. For example, for rock and
pop songs, where the tempo often remains almost constant,
this value can be set to a low value, whereas for classical
music, where the tempo often changes significantly, a high
value can often achieve better results.

The last type is a special compared with the two above.
This is the Label Annotation Tool that is used to provide
the user’s feedback to the system and improve the adapta-
tion ability. This tool can be used only after a beat mod-
ification using the first tool type. When the user edits a
beat, it recommends beats that have the possibility to be
significantly affected by the user’s modification by apply-
ing question marks, as below.

An edited beat

?: recommendationsP: positive label N: negative label

Figure 3. The label annotation tool.

In the above figure, the red beat is the beat currently edited
the user. The user listens to some (not necessarily all) of
the recommended locations (question marks) and judges
whether they really need to be modified or not. If a cor-
rection is necessary, the user assigns a positive label to
the location;, otherwise the label is negative. This can be
achieved by clicking on the label mark with the mouse.
Each time the user clicks on the same mark, the positive
and negative labels are alternately switched. The user can
also directly modify the recommended beat, but does not
have to correct it and leave. This is an important aspect.
The effort of this labeling is minimal, whereas the effort
required to edit a user’s beat manually is significant. This
is because it only takes a moment to listen to the specified
portion and judge whether it needs to be modified. In ad-
dition, this also has a merit in that we can fix the location
of the negative labeled beat at this point. The system uses
these assigned labels to compute the attention map in the
ARSA (§.5.3).

4. BEAT TRACKING

Our beat-tracking algorithm basically follows the state-of-
the-art algorithm [5]. First, we divide the target music
into small frames and obtain the features for each frame.
We use the time difference of the mel-frequency cepstrums
(MFCCs) for the feature (one can also use alternative fea-
tures such as CQT [26]). We used 44.1kHz for the sam-
pling rate, W = 4096 samples for the Hanning window
lengths, and W/2 for the hop size. We then input this fea-
ture series of T frames into the DNN and compute the beat
activation function for each frame. As described in §.1,
we train this DNN using only a local context of the mu-
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sic piece. We use three serial connected TCN blocks [5]
(five layers with {1, 2, 4, 8, 16} dilations and the gated
activations [27]), followed by three linear layers with the
ReLU (Figure 4). We note that the figure shows only a sin-
gle TCN block for simplicity. TCN is a variant of a dilated
convolutional neural network that is inspired by WaveNet
[27]. It takes the past and future frames around the focused
frame. We use the frames for approximately 2.4 seconds
for past and future frames. To train this DNN, we used four
types of datasets: GTZAN [28–30], the RWC popular and
genre dataset [31,32], and an in-house dataset of 400 musi-
cal pieces of various genres purchased from Amazon Mu-
sic [33] and annotated by a vendor. Note that although our
DNN architecture is slightly different from [5], we could
not observe significant differences in our experiments.

To determine the actual beat positions from the beat
activation function, we use the the hidden semi-Markov
model (HSMM) [34, 35], which applies the activation as
the observation state and the tempo as the hidden state.
It estimates the most plausible trajectory throughout the
entire piece of music by solving the Viterbi algorithm.
Our method is basically similar to the state-space tempo
model [8, 14] that uses the HMM. As a significant differ-
ence, our HSMM treats the midway phase of each tempo
as the hidden state (Figure 6: Right). This HSMM divides
the duration of a beat of each tempo into microphases, and
gradually moves through the intermediate states sequen-
tially until it reaches the next beat head. Only when the
state reaches the beat head state, it is allowed to transit to
a different tempo.

5. ADAPTATION ALGORITHM

5.1 Loss Making from the User’s Corrections

We treat the user-modified beat and the two adjacent beats,
for a total of three beats, as a unit. We describe the situa-
tion in which the user moves a beat position as an example
here, but the basic idea is similar to other editing meth-
ods. Assuming that the user-modified beat position is bi
and the beat positions before and after it are bi−1, bi+1, we
make the DNN output to be close to one at bi, and zero at
the midpoint b−i = bi+bi−1

2 and b+i = bi+bi+1

2 , (Figure 5).
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Figure 6. Left: At runtime, we split the pre-trained model into two blocks and insert the adaptive runtime self-attention
block between them (§.5.2). Right: Hidden semi-Markov model for estimating the most plausible tempo trajectory (§.5.4).

Therefore, we define the loss function at an orange color
frame t (referred to as the loss frame in the figure) as,

L(t) =

∣∣∣∣DNN(t)−
(
1−min(1.0,

|bc − t|
W

)

)∣∣∣∣
2

(1)

where bc and W denote the closest beat from the frame t
and the window size, respectively. We minimize the sum
of the loss functions at all the loss frames by a gradient
descent, such as Adam [36], to adapt the DNN.

5.2 Adaptive Runtime Self-Attention

As described, our DNN is trained using only a local con-
text during pre-training, taking approximately 2.4 seconds
of each past and future frame around the interest frame
as input, and shifting the frames individual. By contrast,
at runtime, we split the DNN into two parts, the first half
(three blocks of TCNs) and the second half (three layers of
linear layers and ReLU activations), and insert the ARSA
between them (Figure 6:Left). This means that the model
architecture itself has changed. The ARSA connects all
of the intermediate features (the outputs of the first block)
throughout the entire piece of the music and outputs the
input for the second block at time frame t. This new type
of DNN model achieves a better balance between the re-
duced computational cost during pre-training and an im-
provement of the runtime adaptation capability that dis-
tributes locally modified user feedback to throughout the
entire piece of music.

Now supposing that the series of the outputs of the first
block (intermediate features) {f1, f2, ..., fT }, f t ∈ RD,
similar to general attention, the ARSA first computes three
parameters at each frame t as: Queryt = WQ · f t,
Keyt = WK · f t, V aluet = WV · f t, where WQ, WK ,
and WV ∈ RD×D are the matrices that are initialized as
identity matrices. General attention uses the inner prod-
ucts between queries and keys to construct the attention
map. Alternatively, we use the weighted inner product of
the Queryt and Keyi as,

d(t, i) = (wt ⊗Queryt) · (Pe(|t− i|)⊗Keyi), (2)

where wt ∈ RD is the weight that is interactively deter-
mined by the user’s label annotation (§.3). We describe this
in §.5.3. Pe(δt) ∈ RD, Pe(δt)k = sin(ωnδt), if k = 2n;
otherwise, cos(ωnδt), where ωn = 1.0/0.00012n/

D
2 , de-

notes the relative positional encoding [13] that represents
how apart the frame i is from the frame t. This d(t, i) be-
comes the attention map at the frame t toward the frame i

in the ARSA. After sorting this attention map d(t, i) with
respect to i, we then sample N frames in descending or-
der in a manner of an importance sampling, and store them
into Ct (we use N=512). Then, the output of the ARSA at
frame t can be formulated as follows,

yt = (1− α) · V aluet +

α
∑
i∈Ct

exp(d(t, i))∑
j∈Ct

exp(d(t, j))
· V aluei, (3)

where α denotes the weight as a hyperparameter (we set
0.5 in our experiment).

5.3 Interactively Adapting the Attention

The weight wt in Eq.2 is a unique parameter of ARSA
that is computed using the user’s interactive feedback. As
described in §.3, when the user edits a beat, the label anno-
tation tool first shows the beats that are expected to be sig-
nificantly affected by the modification (the question marks
in the Figure 3). These locations can be derived naturally
from the original principles of the attention mechanism.
The fact that the attention map d(t, i) is larger means that
the frame t is more focused on the frame i. In other words,
the amount of back propagation from a given loss in frame
t would be distributed more to frames with larger d(t, i).
Therefore, we can state that the beats within the vicinity of
frames with large attention map values tend to be more sus-
ceptible to the user modification. Thus, the system shows
these beats to correct the user feedback.

For the recommended beats, the user judges whether
they really need to be correct, and assigns positive/negative
labels to them. The assigned label on a beat is redistributed
to the neighboring frames, as shown in the following fig-
ure.

frames

An edited beat A positive labeled beatA negative labeled beat

PositiveNegative

ta b c d

Figure 7. The labels are distributed to the neighbor frames.

These distributed labels are used to determine the relation-
ship between each frame and the interest frame t. For ex-
ample, in Figure 7, the frames {a, b} are negative for t, and
{c, d} becomes positive for t. Using these relationships of
the frames for the interest frame t, we then compute the
Fisher’s criterion [25, 37] as

wt =
(avg(At,pos)− avg(At,neg))2

std(At,pos)2 + std(At,neg)2
, (4)



where At,pos and At,neg represent Queryt ⊗Pe(|t− i|)⊗
Keyi in the positive and negative frames i for the interest
frame t, respectively. Note that if no feedback from the
user is obtained, we set wt = 1. This weight reduces the
effects from the user’s modification on the frames that the
user does not want to be changed, and conversely increases
the effects simultaneously on the frames that the user wants
to more aggressively modify. It is therefore expected to
improve the adaptation speed.

5.4 HSMM with The User’s Constraints

We also apply the user’s modifications to the HSMM as
constraints using two approaches during the forward path
in the Viterbi algorithm. The first approach is to simply
reduce the likelihoods of the undesired phases directly.
For example, in Figure 6:Right, it is undesirable to pass
through the phase states other than the beat head states at
the destination frame where the user has moved the beat.
Therefore, we prevent such undesired paths by reducing
the likelihoods on the undesired grids (the blue circles).

The second approach is to weight the likelihoods at each
beat-head state, where the tempo transition occurs. We
apply a similar idea to that in §.5.1. First, we prepare a
weighting array U ∈ RT and initialize it by 1. We set
Ut = 1 + (1 − |t − bi|/W ) for the frames near the edited
beat and its neighbors, and Ut = 1− (1− |t− b±i |/W ) for
the frames around their midpoints. Then, our formulation
of the integrated likelihood at the beat-head state hi of the
tempo i at the frame t becomes

G(t, hi) = maxj{ G(t− 1, ej) +

F (t, j, i)Pt−nj
Ut−nj

Γj,iPtUt}, (5)

where ej denotes the phase state just before the beat head
of the tempo j. Γj,i and Pt are the transition probabilities
from tempo j to i, and the observable state (the outputs of
the DNN). nj is the number of phase divisions of tempo
j. F (t, j, i) constrains the tempo range and flexibility that
are set by the tempo-setting tools in §.3. If the tempo i ex-
ceeds the upper tempo limit or falls the lower tempo limit,
F (t, j, i) = 0; otherwise, F (t, j, i) = 1. In addition, if
ni/nj > flext or ni/nj < 1/flext, F (t, j, i) = 0; other-
wise, F (t, j, i) = 1, where flext ∈ [0, 1], is the flexibility
of the tempo change (the slider value).

6. EVALUATION

6.1 Validation through Simulation

We first conducted a validation using a simulation environ-
ment. We compared the results with and without ARSA.
This comparative method without ARSA is equivalent to
fine-tuning, which corresponds to Nakano et al. [18]. In
this experiment, we used the SMC MIREX dataset [38],
which includes 217 musical pieces of various genres with
annotations of the beat positions. The lengths of all the
pieces were aligned to a length of 40 seconds. We used
a laptop PC (CPU: 2.9 GHz 6-Core Intel Core i9, RAM
32GB, GPU: Radeon Pro Vega 20) for equipment. We im-
plemented all the our system including the DNN in C++.
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Figure 8. The result in a simulated experiment. The top
row shows the transitions of the MSE losses throughout the
entire musics. The bottom row shows a comparison of how
quickly the adaptation converged in both methods.

The experimental procedure was as follows. We first
found the three adjacent beats that have the highest er-
rors (MSE loss), and automatically corrected them (treat-
ing three adjacent beats as a single unit, as described in
§5.1). The system then iterated the adaptation iterations
100 times. The system repeated this procedure 5 times. We
then obtained totally 5 error corrections and 500 adapta-
tion iterations for each piece. For ARSA label annotations,
we automatically assigned a positive label if the recom-
mended beat position was sufficiently close to the correct
beat annotation, and otherwise assigned a negative label.
We added five labels for each error correction. Following
to Dixon [39], we considered that an analyzed beat is ac-
curate if it falls within a ±70 ms tolerance window around
the correct position. For adaptation, we updated the param-
eters in the second block and the ARSA while keeping that
of the first block in Figure 6:Left. We found this achieves
a better balance between the computational cost and the
adaptation ability in our experiments.

Figure 8 shows the result. The top row indicates the
transitions of the mean squared errors (MSE loss) through-
out the entire piece of music We note that these errors
are normalized by the number of beats contained in each
piece. Clearly, we can see that the errors in our method
tend to converge to small values, and that our method has
an ability to adapt throughout the entire song from only
the local corrections. By contrast, with the comparative
method, although the error itself tends to be reduced, but
it does not converge well, and we can see that it strug-
gles to adapt to the entire piece of music. The bottom
row in figure 8 shows a comparison of how quickly the
adaptation progresses with both methods. Suppose that
the number of iterations when our method reaches an F1-
measure of over 0.8 for the first time is NA, and for the
comparative method is NB , the figure plots the difference,
NB −NA. Then, a larger the positive value indicates that
our method reaches the F1-measure faster than the exist-
ing method (blue), whereas a smaller negative value indi-
cates that it achieves it at a slower rate (red). Statistically,
in the 156/217 pieces (p < 0.05 by chi-squared test), our
method reached to the goal significantly faster. For that
computational cost, this simulation experiment (a total of
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217 musical pieces) took 5.5 hours for our method and 5
hours for the comparative method. This approximately 8
seconds increases in cost per music on average is a neg-
ligible compared to the actual time the user requires for a
manual correction in practical.

6.2 User Study

We conducted a user study to evaluate how the proposed
interface improves the efficiency of the correction. We
measured the working time for correcting the errors con-
tained in the test target music. We set the baseline of this
working time as the duration of the music. The reasons for
this are as follows: Naturally, the fastest way to annotate
the beats is to accurately tap throughout the entire piece of
music if it is possible (although it is hard). The ideal work-
ing time for this method is equal to the duration. There-
fore, our experiment determines whether our interface can
reduce the working time to less than this baseline.

We hired 5 participants, all skilled users of sound edit-
ing software (e.g., Cubase [40] and Audacity [41]; DAW).
The experiment consisted of three parts. The first part was
to practice using our interface (45 minutes). We described
how to use the interface, and each subject trained the sys-
tem. The second part was a time trial (45 minutes). Each
subject was asked to correct as quickly as possible the er-
rors of the beats in the two pieces of target music using our
interface. For the targets, we selected 2 pieces from the
RWC Jazz dataset [31]. The first one is No.40, which has
a duration of 7 minutes and 41seconds, and contains 481
beats, and the second one is No.41, which has a duration
of 6 minutes and 6 seconds, and contains 637 beats. Both
pieces were selected because they have appropriate dura-
tions and contain many errors from the initial analysis that
are impractical to fix manually. Finally, the last part was a
survey interview about their experience (10 minutes).

In the second part, each participant processed two
pieces of target music. To avoid different interpretations of
the beat by different people, we prepared an “answer” mu-
sic file containing click sounds. We first asked the partici-
pants to listen to this answer entirely once through. Next,
we asked the subjects to correct the beats as quickly as pos-
sible. We monitored the working times and progress of the
F1-measure. When the F1 reached above 0.9 stably, we
stopped the task even if they had not yet checked the entire
piece of musics. Although each subject was allowed to use
all tools prepared in §.3, however, we prohibited the use of
only the tap tool for more than 5 seconds in a row. We also
asked them to press the Re-Opt button as much as possible
after each operation.

Figure 9 shows the result of improvements of the F1-
measure (vertical axis) for each participants with the pas-
sage of the working time (horizontal axis). The vertical
dotted lines represents the duration of each music. As the
results show, 4/5 and 3/5 of the subjects completed the task
in less time than the durations for pieces No. 40 and No.
41, respectively, and the remaining subjects also completed
the task at slightly after the target duration. This means that
most of the subjects completed the task without realizing
it, despite not listening to the entire piece of music. Of
course, when we really use our interface, we have to check
the entire piece of music at the end. Therefore, the working
time can not be less than the duration of the music piece.
Therefore, albeit conditionally, we can conclude that our
interface improves the efficiency of the error corrections.

Finally, we conducted an interview with each partici-
pant. We prepared two predetermined questions. The first
question is “Would you like to use this interface if it is im-
plemented on DAW?”. For this question, all the partici-
pants answered “Yes”. The second question is “Did you
have any problems in using the system?”. For this ques-
tion, some participants commented that A. they were con-
fused about which tool to use for their facing beat error
because the system provides many options for modifica-
tion. Other participants also mentioned that B. they were
unsure how soon the optimization loop should be stopped.

For the comment A, it is expected to be alleviated as
the user becomes more proficient with the interface. How-
ever, as a better solution, the system could understand the
current situation and recommend the most effective tool.
This remains an area for a future work. For the comment
B, because the concept of optimization through iterations
is difficult for the common users to understand, we would
need to find a criterion for the system to automatically ter-
minate the iteration. However, because our adaptation pro-
cess does not uniquely converge, it is difficult to find such
a criterion. Therefore, this is a challenge for the future. As
a similar problem, because of the iterative adaptation, the
overall error rate frequently increases even if the user has
corrected the error. This is not intuitive and is disconcert-
ing for the user and should be improved.

7. CONCLUSION

In this paper, we proposed an interactive beat-tracking in-
terface for adapting to a specific user and a targeted piece
of music using a human-in-the-loop approach. To achieve
this, we introduced a novel adaptive runtime self-attention
that achieves a better balance between the lower compu-
tational cost during training and the high runtime adapta-
tion ability that distributes the local modifications by the
user to throughout the entire input sequence globally. We
validated the feasibility and effectiveness of our method
through several experiments, including a user study with
the potential users of our interface. Beyond beat tracking,
by training the machine learning model using only a local
context and adapting it to a specific target using the global
context at runtime, our method is expected to be useful
for other broad domains such as chord recognition, singing
voice synthesis, and sound source separation.
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